Maria Alessandra Antonelli, Angelo Castaldo, Marco Forti, Alessia Marrocco and Andrea Salustri
This paper proposes an analysis of occupational accidents in Italy at the regional level. For this purpose, our panel is composed of 20 regions over the 2010–2019 time span.
Abstract
Purpose
This paper proposes an analysis of occupational accidents in Italy at the regional level. For this purpose, our panel is composed of 20 regions over the 2010–2019 time span.
Design/methodology/approach
We apply different econometric estimation techniques (pooled OLS model, panel fixed and random effects models and semiparametric fixed model) using INAIL and ISTAT data. Our models investigate workplace accidents at the regional level by accounting for socioeconomic, labour market and productive system variables and controlling for possible underreporting bias.
Findings
Overall results reveal the existence of a relevant under-notification phenomenon of accidents at work with respect to moderate accidents, that is higher especially for the southern regions of Italy. However, when considering as outcome variable an alternative set of more severe workplace accidents our model specification remains highly jointly statistically significant. Among our main findings, the analysis shows that worker skills (blue collar) strongly affect the regional pattern of workplace accidents, i.e. an increase of 1% of low paid employees generates about an increase of 1.8 severe workplace accidents per thousand workers. Moreover, we provide evidence that the size of the firm is inversely related to the occupational accident rates. Finally, our results highlight a nonlinear relationship between GDP and occupational accidents for the Italian regional context, confirmed by the high statistical significance of the quadratic term in all the estimated linear models and by the semi-parametric analysis.
Originality/value
A first element of originality of our study consists of investigating the macro determinants of occupation accidents at a regional Italian level. Second, the empirical literature (Boone and Van Ours, 2006) highlights the possible bias of underreporting behaviours on nonfatal accidents in contrast to fatal accidents that are always reported. From this perspective, we have identified a few analyses (namely, Boone et al., 2011) considering different accident sets characterised by different severity degrees. Thus, this paper contributes to the literature considering five alternative subsets of accidents stratified by degree of severity (i.e. moderate, severe, moderate plus severe, severe plus fatal and total accident rates) to test for possible underreporting bias affecting our econometric model.
Details
Keywords
Adhi Alfian, Hamzah Ritchi and Zaldy Adrianto
Increased fraudulent practices have heightened the need for innovation in anti-fraud programs, necessitating the development of analytics techniques for detecting and preventing…
Abstract
Purpose
Increased fraudulent practices have heightened the need for innovation in anti-fraud programs, necessitating the development of analytics techniques for detecting and preventing fraud. The subject of fraud analytics will continue to expand in the future for public-sector organizations; therefore, this research examined the progress of fraud analytics in public-sector transactions and offers suggestions for its future development.
Design/methodology/approach
This study systematically reviewed research on fraud analytics development in public-sector transactions. The review was conducted from June 2021 to June 2023 by identifying research objectives and questions, performing literature quality assessment and extraction, data synthesis and research reporting. The research mainly identified 43 relevant articles that were used as references.
Findings
This research examined fraud analytics development related to public-sector financial transactions. The results revealed that fraud analytics expansion has not spread equally, as most programs have been implemented by governments and healthcare organizations in developed countries. This research also exposed that the analytics optimization in fraud prevention is higher than for fraud detection. Such analytics help organizations detect fraud, improve business effectiveness and efficiency, and refine administrative systems and work standards.
Research limitations/implications
This research offers comprehensive insights for researchers and public-sector professionals regarding current fraud analytics development in public-sector financial transactions and future trends.
Originality/value
This study presents the first systematic literature review to investigate the development of fraud analytics in public-sector transactions. The findings can aid scholars' and practitioners' future fraud analytics development.