Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 3 August 2015

Piotr Guzdek and Marek Wzorek

The purpose of the paper was to present a comparative study on the microstructure and magnetoelectric effect of new magnetoelectric composites based on TbFe2 compound and Ni0.3Zn…

285

Abstract

Purpose

The purpose of the paper was to present a comparative study on the microstructure and magnetoelectric effect of new magnetoelectric composites based on TbFe2 compound and Ni0.3Zn0.62Cu0.08Fe2O4, CoFe2O4 ferrites as a magnetostrictive phase, Pb(Fe1/2Ta1/2)O3 (PFT), Pb(Fe1/2Nb1/2)O3 relaxors as a ferroelectric phase and polyvinylidene fluoride (PVDF) as piezoelectric phase.

Design/methodology/approach

The ceramic components of composites were prepared by the standard solid-state reaction method. The intermetallic compound TbFe2 was prepared with an arc melting system with a contact-less ignition in a high purity argon atmosphere. The metal – ceramic – polymer composites were prepared in a container in which powder of PVDF were dissolved in N,N-dimethylformamide with continuous mixing and at the controlled temperature. Ceramic composites were prepared as bulk samples and multilayer tape cast and co-sintered laminates. The microstructure of the composites was investigated using scanning electron microscopy (SEM). The magnetoelectric effect of the composites was evaluated at room temperature by means of the dynamic lock-in method.

Findings

SEM analysis revealed a dense, fine-grained microstructure and uniform distribution of the metallic, ferrite and relaxor grains in the bulk composites. The SEM image for multilayer composite illustrates the lack of cracks or delaminations at the phase boundaries between the well-sintered ferrite and relaxor layers. For all studied composites, the magnetoelectric coefficients at a lower magnetic field increase, reaches a maximum and then decreases.

Originality/value

The progress in electronic technology is directly linked to advances made in materials science. Exploring and characterizing new materials with interesting magnetoelectric properties, in the rapidly growing field of functional materials, is an important task. The paper reports on processing, microstructure and magnetoelectric properties of novel magnetoelectric composites.

Details

Microelectronics International, vol. 32 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Access Restricted. View access options
Article
Publication date: 3 August 2015

Marcin Myśliwiec, Ryszard Kisiel and Marek Guziewicz

The purpose of this paper is to deal with material and technological aspects of SiC diodes assembly in ceramic packages. The usefulness of combinations of different materials and…

238

Abstract

Purpose

The purpose of this paper is to deal with material and technological aspects of SiC diodes assembly in ceramic packages. The usefulness of combinations of different materials and assembly techniques for the creation of inner connection system in the ceramic package, as well as the formation of outer connections able to work at temperatures up to 350°C, were evaluated.

Design/methodology/approach

The ceramic package consists of direct bonded copper (DBC) substrate with Cu pads electroplated by Ni or Ni/Au layers on which a SiC diode was assembled by sintering process using Ag microparticles. For the connections inside the ceramic package, the authors used Al/Ni and Au-Au material system based on aluminium or gold wire bonding. The authors sealed the ceramic package with glass encapsulation and achieved a full encapsulation. Outer connections were manufactured using Cu ribbon plated with Ag layer and sintered to DBC by Ag micro particle. The authors investigated the long-term stability of electrical parameters of SiC diodes assembled in ceramic package at temperature 350°C.

Findings

The authors have shown that Schottky and PiN SiC diodes assembled with different technologies and materials in ceramic package keep their I-V characteristics unchanged during ageing at 350°C for 400 h.

Originality/value

The SiC diodes assembled into ceramic package with Al/Ni or Au-Au inner electrical connection systems and outer connections system based on Ag microparticles sintering process of Cu/Ag ribbon to DBC substrate can work reliably in temperature range up to 350°C.

Details

Microelectronics International, vol. 32 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 2 of 2
Per page
102050