Search results

1 – 2 of 2
Article
Publication date: 12 September 2024

Bruno Benegra Denadai, José Aguiomar Foggiatto, Peterson Triches Dornbusch, Maria Fernanda Pioli Torres and Marco Antônio Luersen

This paper aims to design and manufacture an equine hand prosthesis using additive manufacturing, with an estimated useful life of one year. This approach offers a fast and…

Abstract

Purpose

This paper aims to design and manufacture an equine hand prosthesis using additive manufacturing, with an estimated useful life of one year. This approach offers a fast and affordable manufacturing alternative while ensuring the horse's safety, comfort and functionality.

Design/methodology/approach

The ground reaction force and the frequency of a horse’s walking were obtained from the literature. Mechanical tests were conducted on specimens with different manufacturing directions to determine the mechanical properties of the printed material. Finite element simulations, along with fatigue equations were used to design a geometry that respected the stress constraints. Subsequently, a prototype was manufactured in thermoplastic polyurethane using additive manufacturing technique.

Findings

With the aid of the proposed methodology, a new low-cost equine hand prosthesis is developed, and a prototype is manufactured. And in accordance with the design requirements, this prosthesis is intended to exhibit proper durability.

Social implications

This work presents an alternative way for horses facing amputation, offering a solution where euthanasia can be avoided through the use of a prosthesis to replace a part of the amputated limb. This approach could not only extend the reproductive life of matrices with high commercial value but also preserve the lives of animals with sentimental value to the owner.

Originality/value

To the best of the authors' knowledge, this is the first study of an equine hand prosthesis model designed for and manufactured by additive manufacturing.

Details

Rapid Prototyping Journal, vol. 31 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 August 2021

Jefte da Silva Guimarães, Valéria Serrano Faillace Oliveira Leite, Marco Antonio Sala Minucci and Dermeval Carinhana

The purpose of this paper is to demonstrate the aerodynamic behavior of a supersonic combustion test bench (SCTB) components, as the transition piece and the combustor of a…

Abstract

Purpose

The purpose of this paper is to demonstrate the aerodynamic behavior of a supersonic combustion test bench (SCTB) components, as the transition piece and the combustor of a scramjet (supersonic combustion ramjet), manufactured by 3D printing or additive manufacturing (AM).

Design/methodology/approach

For the dimensional and structural analysis of the manufactured models, a portable 3D scanner was used to generate the mesh of its dimensions, and to compare them before and after the experiments, a roughness measuring system was also used to verify the roughness inside the models before and after the tests, as roughness is an important parameter because it directly affects the boundary layer. For the visualization of the flow, the non-intrusive schlieren optical technique was used.

Findings

The experiments were carried out on the SCBT for Mach 2 flows, using the manufactured prototypes and showed that there was no structural and dimensional change of the model after the test batteries. It was found that the roughness presented by the material did not affect the quality of the flow generated. This shows that the investigated material can also be applied in experiments with supersonic flow.

Originality/value

This paper presents that it is possible to use in ground test facilities, for the studies of supersonic flow (in cold condition), pieces and models manufactured by 3D printing without affecting the quality of the flow generated during the experiments. This study presents a new perspective to approach AM applied in the studies of supersonic flows.

Details

Rapid Prototyping Journal, vol. 27 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2