Marcin Figat and Agnieszka Kwiek
The aim of the research is to conduct a study into a configuration of an aircraft system with a focus on aerodynamics. In addition, trim condition and static stability constraints…
Abstract
Purpose
The aim of the research is to conduct a study into a configuration of an aircraft system with a focus on aerodynamics. In addition, trim condition and static stability constraints were included. The main application of this system is suborbital space flights. The presented concept of a modular airplane system (MAS) consists of two vehicles: a Rocket Plane and a Carrier. Both are designed in tailless configurations but coupled formed a classic tail aircraft configuration, where the Rocket Plane works as the empennage. The most important challenge is to define the mutual position of those two tailless vehicles under the assumption that each vehicle will be operating alone in different flight conditions while joined in one object create a conventional aircraft. Each vehicle configuration (separated and coupled) must fulfil static stability and trim requirements.
Design/methodology/approach
Aircrafts’ aerodynamic characteristics were obtained using the MGAERO software which is a commercial computing fluid dynamics tool created by AMI Aero. This software uses the Euler flow model. Results from this software were used in the static stability and trim condition analysis.
Findings
The main outcome of this investigation is a mutual position of the Rocket Plane and the Carrier that fulfils project requirements. Also, the final configuration of both separated vehicles (Rocket Plane and Carrier) and the complete MAS were defined. In addition, it was observed that in the case of classic aircraft configuration which is created by connecting two tailless vehicles increasing horizontal tail arm reduces static stability. This is related to a significantly higher mass ratio of the horizontal tail (the Rocket Plane) with respect to the whole system. Moving backward, the Rocket Plane has a notable effect on a position of a centre of gravity of the whole system static stability. Moreover, the impact of the mutual vehicles’ position (horizontal tail arm) and inclination angle on the coupled vehicle lift to drag ratio was analysed.
Research limitations/implications
In terms of aerodynamic computation, MGAERO software using an inviscid flow model, therefore, both a friction drag and breakdown of vortex are not considered. But the presented research is for the computation stage of the design, and the MGAERO software guarantees satisfactory accuracy with respect to the relatively low time of computations. The second limitation is that the presented results are for the conceptual stage of the design and dynamic stability constraints were not taken into account.
Practical implications
The ultimate goal of the coupled aircraft project is to conduct flying tests and the presented result is one of the milestones to achieve this goal.
Originality/value
A design process for a conventional aircraft configuration is well known however, there are not many examples of vehicles that consist of two coupled aircrafts where both vehicles have similar mass. The unique part of this paper includes results of the investigation of the mutual position of the vehicles that can fly alone, as well as in coupled form. The impact of the position of the centre of gravity on trim conditions and static stability of the coupled configuration was investigated.
Details
Keywords
This paper aims to present the results of aerodynamic calculation of the aircraft in tandem wing configuration called VTOL. A presented vehicle combines the capabilities of the…
Abstract
Purpose
This paper aims to present the results of aerodynamic calculation of the aircraft in tandem wing configuration called VTOL. A presented vehicle combines the capabilities of the classic aircraft and helicopters. The aircraft is equipped with two pairs of tilt-rotors mounted on the tips of the front and the rear wing. The main goal of the presented research was to find the aerodynamic impact of both pairs of tilt-rotors on aerodynamic coefficients of the aircraft. Moreover, the rotors impact on the static stability of the aircraft was investigated too.
Design/methodology/approach
The CFD analysis was made for the complete aircraft in the tandem wing configuration. The computation was performed for the model of aircraft which was equipped with the four sub-models of the front and rear rotors. They were modeled as the actuator discs. This method allows for computing the aerodynamic impact of rotating components on the aircraft body. All aerodynamic analysis was made by the MGAERO software. The numerical code of the software was based on the Euler flow model. The used numerical method allows for the quick computation of very complex model of aircraft with a satisfied accuracy.
Findings
The result obtained by computation includes the aerodynamic coefficients which described the impact of the tilt rotors on the aircraft aerodynamic. The influence of the angle of attack, sideslip angle and the change of rotor tilt angle was investigated. Evaluation of the influence was made by the stability margin analysis and the selected stability derivatives computation.
Practical implications
Presented results could be very useful in the computation of dynamic stability of unconventional aircraft. Moreover, results could be helpful during designing the aircraft in the tandem wing configuration.
Originality/value
This paper presents the aerodynamic analysis of the unconventional configuration of the aircraft which combines the tandem wing feature with the tilt-rotor advantages. The impact of disturbance generated by the front and rear rotors on the flow around the aircraft was investigated. Moreover, the impact of rotors configuration on the aircraft static stability was found too.
Details
Keywords
Marcin Figat and Agnieszka Kwiek
Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced…
Abstract
Purpose
Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced drag. The purpose of this paper is to determine whether a certain trend in the wingspan impact on aircraft dynamic stability can be identified. The secondary goal was to compare the response to control of flaps placed on a front and rear wing.
Design/methodology/approach
The aerodynamic data and control derivatives were obtained from the computational fluid dynamics computations performed by the MGAERO software. The equations of aircraft longitudinal motion in a state space form were used. The equations were built based on the aerodynamic coefficients, stability and control derivatives. The analysis of the dynamic stability was done in the MATLAB by solving the eigenvalue problem. The response to control was computed by the step response method using MATLAB.
Findings
The results of this study showed that because of a strong aerodynamic coupling, a nonlinear relation between the wing size and aircraft dynamic stability proprieties was observed. In the case of the flap deflection, stronger oscillation was observed for the front flap.
Originality/value
Results of dynamic stability of aircraft in the tandem wing configuration can be found in the literature, but those studies show outcomes of a single configuration, while this paper presents a comprehensive investigation into the impact of wingspan on aircraft dynamic stability. The results reveal that because of a strong aerodynamic coupling, the relation between the span factor and dynamic stability is nonlinear. Also, it has been demonstrated that the configuration of two wings with the same span is not the optimal one from the aerodynamic point of view.
Details
Keywords
This paper presents first sight on the longitudinal control strategy for an aircraft in the tandem wing configuration. It is an aerodynamic strongly coupled configuration that…
Abstract
Purpose
This paper presents first sight on the longitudinal control strategy for an aircraft in the tandem wing configuration. It is an aerodynamic strongly coupled configuration that needs a lot of detailed aerodynamic analysis which describes the mutual impact of the main parts of the aircraft. The purpose of this paper is to build the numerical model that allows to make an analysis of necessary flaps (front and rear) deflection and prepare the control strategy for this kind of aircraft.
Design/methodology/approach
Aircrafts’ aerodynamic characteristics were obtained using the MGAERO software which is a commercial computing fluid dynamics tool created by Analytical Methods, Inc. This software uses the Euler flow model. Results from this software were used in the static stability evaluation and trim condition analysis. The trim conditions are the outcome of the optimisation process whose goal was to find the best front and rear flap deflection to achieve the best lift to drag (L/D) ratio.
Findings
The main outcome of this investigation is the proposal of strategy for the front and rear flap deflection which ensured the maximum L/D ratio and satisfied the trim condition. Moreover, the analysis of the mutual impact of the front and rear wings and the analysis of the control surface impact on the aerodynamic characteristic of the aircraft are presented.
Research limitations/implications
In terms of aerodynamic computation, MGAERO software uses an inviscid flow model. However, this research is for the conceptual stage of the design and the MGAERO software grantee satisfied accurate respect to relatively low time of computations.
Practical implications
The ultimate goal is to build an aircraft in a tandem wing configuration and to conduct flying tests or wind tunnel tests. The presented result is one of the milestones to achieve this goal.
Originality/value
The aircraft in the tandem wing configuration is an aerodynamic-coupled configuration that needs detailed analysis to find the mutual interaction between the front and rear wings. Moreover, the mutual impact of the front and rear flaps is necessary too. Obtaining these results allowed this study to build the numerical model of the aircraft in the tandem wing configuration. It allows to find the best strategy of flap deflection, which allows to obtain the maximum L/D ratio and satisfy the trim condition.
Details
Keywords
Ewa Marcinkiewicz, Zdobyslaw Jan Goraj and Marcin Figat
The purpose of this paper is to describe an integrated approach to spin analysis based on 6-DOF (degrees of freedom) fully nonlinear equations of motion and a three-dimensional…
Abstract
Purpose
The purpose of this paper is to describe an integrated approach to spin analysis based on 6-DOF (degrees of freedom) fully nonlinear equations of motion and a three-dimensional multigrid Euler method used to specify a flow model. Another purpose of this study is to investigate military trainer performance during a developed phase of a deliberately executed spin, and to predict an aircraft tendency while entering a spin and its response to control surface deflections needed for recovery.
Design/methodology/approach
To assess spin properties, the calculations of aerodynamic characteristics were performed through an angle-of-attack range of −30 degrees to +50 degrees and a sideslip-angle range of −30 degrees to +30 degrees. Then, dynamic equations of motion of a rigid aircraft together with aerodynamic loads being premised on stability derivatives concept were numerically integrated. Finally, the examination of light turboprop dynamic behaviour in post-stalling conditions was carried out.
Findings
The computational method used to evaluate spin was positively verified by comparing it with the experimental outcome. Moreover, the Euler code-based approach to lay down aerodynamics could be considered as reliable to provide high angles-of-attack characteristics. Conclusions incorporate the results of a comparative analysis focusing especially on comprehensive assessment of output data quality in relation to flight tests.
Originality/value
The conducted calculations take into account aerodynamic and flight dynamic interaction of an aerobatic-category turboprop in spin conditions. A number of manoeuvres considering different aircraft configurations were simulated. The computational outcomes were subsequently compared to the results of in-flight tests and the collected data were thoroughly analysed to draw final conclusions.
Details
Keywords
This paper aims to present the results of aerodynamic calculation of impact the main rotor on the fuselage and the tail of a light gyroplane. This kind of vehicle is a type of…
Abstract
Purpose
This paper aims to present the results of aerodynamic calculation of impact the main rotor on the fuselage and the tail of a light gyroplane. This kind of vehicle is a type of rotorcraft which uses a non-powered rotor in autorotation to develop lift and engine-powered propeller to provide the thrust. Both of them disturb the flow around the gyroplane body (gyroplane fuselage and tail) and influence on its static stability. The main goal of the presented research was to find the magnitude of this influence. To measure this effect, the main stability derivatives changes of gyroplane body were investigated.
Design/methodology/approach
The CFD analysis of the complete gyroplane was made. Computation was performed for the model of gyroplane which was equipped with the two sub-models of the main rotor and the engine-powered propeller. Both of them were modelled as the actuator discs. This method allows to compute the aerodynamic impact of rotating components on the gyroplane body. All aerodynamic analysis was made by the MGAERO software. The numerical code of the software bases on the Euler flow model. Next, the resulting aerodynamic coefficients were used to calculate the most important stability derivatives of the gyroplane body.
Findings
The result obtained by computation presents the change in the most important aerodynamic coefficients and stability derivatives of the gyroplane body caused by the impact of its main rotor. Moreover, the result includes the change of the aerodynamic coefficients and stability derivatives caused by change of the main rotor configuration (change of rotation rate and angle of incidence) and change of the flight condition (gyroplane angle of attack sideslip angle and flight speed).
Practical implications
Analysis of the main rotor impact will be very useful for evaluation of dynamic stability of the light gyroplane. Moreover, the results will be helpful to design the horizontal and vertical tail for the light gyroplane.
Originality/value
This paper presents the method of the numerical analysis of the static stability of the light gyroplane’s body. The results of analysis present the impact of disturbance generated by the rotating main rotor on the static stability of the gyroplane body. Moreover, the impact of the main rotor configuration change and the flight condition change on the static stability were investigated too. The evaluation of the gyroplane’s body static stability was made by the stability derivatives. The methodology and obtained result will be very useful for analysis of the dynamic stability of the light gyroplanes. Moreover, the results will be helpful during design the main components of the gyroplane like vertical and horizontal tail.
Details
Keywords
Marcin Figat, Tomasz Goetzendorf‐Grabowski and Zdobysław Goraj
To provide an effective numerical method for analysis and design of aerodynamic characteristics of unmanned aerial vehicles basing on commercial package VSAERO.
Abstract
Purpose
To provide an effective numerical method for analysis and design of aerodynamic characteristics of unmanned aerial vehicles basing on commercial package VSAERO.
Design/methodology/approach
Calculation was made by VSAERO package, which is based on a classical panel method enhanced on boundary layer method. Paper explains how to use efficiently VSAERO package, which utilizes advanced CAD techniques, in modern designing of unmanned aircraft.
Findings
During aerodynamic analysis of unmanned aircraft the computing cycle is repeated many times until the required accuracy is obtained and when the best performance of an aircraft is achieved. Design process depends on the number of iterations. If the preliminary configuration (the so‐called starting design point) is well selected and the aerodynamic analysis is completed in a relatively short time, then the overall design time will be shortened.
Research limitations/implications
The panel method is very useful tool in spite of different limitations. For example, the Reynolds number has to be sufficiently high, angles of attack and sideslip have to be small enough. Computational process is relatively fast and the accuracy depends on the geometry representation. The boundary layer included into the computational model improves the accuracy of aerodynamic calculations. This methodology is limited to subsonic and low transonic speeds.
Practical implications
A very useful source of computational information and patterns to follow, especially for engineering students and engineers dealing with aerodynamic of unmanned aviation. Surface panel geometry can be transferred from UNIGRAPHICS via IGES files or can be generated from scratch using SPING or PEP software.
Originality/value
This paper offers a practical help for designers planning to develop a new unmanned platform. VSAERO package appeared to be a very useful tool for aerodynamic calculation in the full cycle design activity. This software utilizes the panel method enhanced on a boundary layer model for determination of the fundamental aerodynamic characteristic of an arbitrary aircraft. Presented paper shows a very efficient way how to compute the aerodynamics necessary for design of a new MALE class UAV.