Frédérique Le Louër and María-Luisa Rapún
The purpose of this paper is to revisit the recursive computation of closed-form expressions for the topological derivative of shape functionals in the context of time-harmonic…
Abstract
Purpose
The purpose of this paper is to revisit the recursive computation of closed-form expressions for the topological derivative of shape functionals in the context of time-harmonic acoustic waves scattering by sound-soft (Dirichlet condition), sound-hard (Neumann condition) and isotropic inclusions (transmission conditions).
Design/methodology/approach
The elliptic boundary value problems in the singularly perturbed domains are equivalently reduced to couples of boundary integral equations with unknown densities given by boundary traces. In the case of circular or spherical holes, the spectral Fourier and Mie series expansions of the potential operators are used to derive the first-order term in the asymptotic expansion of the boundary traces for the solution to the two- and three-dimensional perturbed problems.
Findings
As the shape gradients of shape functionals are expressed in terms of boundary integrals involving the boundary traces of the state and the associated adjoint field, then the topological gradient formulae follow readily.
Originality/value
The authors exhibit singular perturbation asymptotics that can be reused in the derivation of the topological gradient function in the iterated numerical solution of any shape optimization or imaging problem relying on time-harmonic acoustic waves propagation. When coupled with converging Gauss−Newton iterations for the search of optimal boundary parametrizations, it generates fully automatic algorithms.
Details
Keywords
Frédérique Le Louër and María-Luisa Rapún
In this paper, the authors revisit the computation of closed-form expressions of the topological indicator function for a one step imaging algorithm of two- and three-dimensional…
Abstract
Purpose
In this paper, the authors revisit the computation of closed-form expressions of the topological indicator function for a one step imaging algorithm of two- and three-dimensional sound-soft (Dirichlet condition), sound-hard (Neumann condition) and isotropic inclusions (transmission conditions) in the free space.
Design/methodology/approach
From the addition theorem for translated harmonics, explicit expressions of the scattered waves by infinitesimal circular (and spherical) holes subject to an incident plane wave or a compactly supported distribution of point sources are available. Then the authors derive the first-order term in the asymptotic expansion of the Dirichlet and Neumann traces and their surface derivatives on the boundary of the singular medium perturbation.
Findings
As the shape gradient of shape functionals are expressed in terms of boundary integrals involving the boundary traces of the state and the associated adjoint field, then the topological gradient formulae follow readily.
Originality/value
The authors exhibit singular perturbation asymptotics that can be reused in the derivation of the topological gradient function that generates initial guesses in the iterated numerical solution of any shape optimization problem or imaging problems relying on time-harmonic acoustic wave propagation.