Manmatha K. Roul and Sukanta K. Dash
The purpose of this paper is to compute the pressure drop through sudden expansions and contractions for two‐phase flow of oil/water emulsions.
Abstract
Purpose
The purpose of this paper is to compute the pressure drop through sudden expansions and contractions for two‐phase flow of oil/water emulsions.
Design/methodology/approach
Two‐phase computational fluid dynamics (CFD) calculations, using Eulerian–Eulerian model, are employed to calculate the velocity profiles and pressure drops across sudden expansions and contractions. The pressure losses are determined by extrapolating the computed pressure profiles upstream and downstream of the expansion/contraction. The oil concentration is varied over a wide range of 0‐97.3 percent by volume. The flow field is assumed to be axisymmetric and solved in two dimensions. The two‐dimensional equations of mass, momentum, volume fraction and turbulent quantities along with the boundary conditions have been integrated over a control volume and the subsequent equations have been discretized over the control volume using a finite volume technique to yield algebraic equations which are solved in an iterative manner for each time step. The realizable per phase k‐ ε turbulent model is considered to update the fluid viscosity with iterations and capture the individual turbulence in both the phases.
Findings
The contraction and expansion loss coefficients are obtained from the pressure loss and velocity data for different concentrations of oil–water emulsions. The loss coefficients for the emulsions are found to be independent of the concentration and type of emulsions. The numerical results are validated against experimental data from the literature and are found to be in good agreement.
Research limitations/implications
The present computation could not use the surface tension forces and the energy equation due to huge computing time requirement.
Practical implications
The present computation could compute realistically the two‐phase pressure drop through sudden expansions and contractions by using a two‐phase Eulerian model and hence this model can be effectively used for industrial applications where two‐phase flow comes into picture.
Originality/value
The original contribution of the paper is in the use of the state‐of‐the‐art Eulerian two‐phase flow model to predict the velocity profile and pressure drop through industrial piping systems.