Amrit Raj Paul, Manidipto Mukherjee and Mohit Kumar Sahu
The purpose of this study is to investigate the deposition of SS–Al transitional wall using the wire arc directed energy deposition (WA-DED) process with a Cu interlayer. This…
Abstract
Purpose
The purpose of this study is to investigate the deposition of SS–Al transitional wall using the wire arc directed energy deposition (WA-DED) process with a Cu interlayer. This study also aims to analyse the metallographic properties of the SS–Cu and Al–Cu interfaces and their mechanical properties.
Design/methodology/approach
The study used transitional deposition of SS–Al material over each other by incorporating Cu as interlayer between the two. The scanning electron microscope analysis, energy dispersive X-ray analysis, X-ray diffractometer analysis, tensile testing and micro-hardness measurement were performed to investigate the interface characteristics and mechanical properties of the SS–Al transitional wall.
Findings
The study discovered that the WA-DED process with a Cu interlayer worked well for the deposition of SS–Al transitional walls. The formation of solid solutions of Fe–Cu and Fe–Si was observed at the SS–Cu interface rather than intermetallic compounds (IMCs), according to the metallographic analysis. On the other hand, three different IMCs were formed at the Al–Cu interface, namely, Al–Cu, Al2Cu and Al4Cu9. The study also observed the formation of a lamellar structure of Al and Al2Cu at the hypereutectic phase. The mechanical testing revealed that the Al–Cu interface failed without significant deformation, i.e. < 4.73%, indicating the brittleness of the interface.
Originality/value
The study identified the formation of HCP–Fe at the SS–Cu interface, which has not been previously reported in additive manufacturing literature. Furthermore, the study observed the formation of a lamellar structure of Al and Al2Cu phase at the hypereutectic phase, which has not been previously reported in SS–Al transitional wall deposition.
Details
Keywords
Avinash Mishra, Amrit Raj Paul, Manidipto Mukherjee, Rabesh Kumar Singh and Anuj Kumar Sharma
The purpose of this research is to show the characteristics of a Cu–Ti dissimilar interface produced by a wire arc-based additive manufacturing process. The purpose of this…
Abstract
Purpose
The purpose of this research is to show the characteristics of a Cu–Ti dissimilar interface produced by a wire arc-based additive manufacturing process. The purpose of this research was to determine the viability of the Cu–Ti interface for the fabrication of functionally graded structures (FGS) using the wire arc additive manufacturing (WAAM) process.
Design/methodology/approach
This paper used the WAAM process with variable current vis-à-vis heat input to demonstrate multiple Ti-6Al-4V (Ti64) and C11000 dissimilar fabrications. The hardness and microstructure of the dissimilar interfaces were investigated thoroughly. The formation of Cu–Ti intermetallic at the Ti64/Cu fusion interface is been revealed by scanning electron microscopy and energy dispersive X-ray analysis, while X-ray diffraction was used to identify various Cu–Ti intermetallic phases. The effect of microstructure on interfacial sensitivity and hardness are also investigated.
Findings
The formation of CuTi intermetallic and the β-phase transformation in Ti-6Al-4V are found to be heat input dependent. The Cu diffusion length increases as the heat input for Ti64 deposition increases, resulting in a greater Cu–Ti intermetallic thickness. The Cu–Ti interface properties improve when the heat input is less than approximately 250 J/mm or the deposition current is less than 90 A. The microhardness ranges from 55 to 650 HV from the Cu-side to the interface and from 650 to 350 HV from the interface to the Ti-side. Higher current increases interface hardness, which increases brittleness and makes the interface more prone to interfacial cracking.
Originality/value
Nonlinear components are needed for a variety of extreme engineering applications, which can be met by FGS with varying microstructure, composition and properties. FGS produced using the WAAM process is a novel concept that requires further investigation. Despite numerous studies on Ti-clad Cu, information on Cu–Ti interface characteristics is lacking. Furthermore, the suitability of the WAAM process for the development of Cu–Ti FGS is unknown. As a result, the goal of this research article is to fill these gaps by providing preliminary information on the feasibility of developing Cu–Ti FGS via the WAAM process.