Search results
1 – 2 of 2Reetu Yadav, Mamta Kushwah, Anna Nikolaevna Berlina and Mulayam Singh Gaur
The purpose of this study is determination of cadmium using silver-gold bimetallic nanoparticles (Ag-Au BMNPs) and an aptamer modified glassy carbon electrode.
Abstract
Purpose
The purpose of this study is determination of cadmium using silver-gold bimetallic nanoparticles (Ag-Au BMNPs) and an aptamer modified glassy carbon electrode.
Design/methodology/approach
The maximum response of modified electrode was obtained with, 50 mV pulse amplitude, 20 mV/s scan rate in phosphate buffer of pH 4.0. Ag-Au BMNPs, as the mediators improved electron transmit during the entire electron transfer process and the aptasensor response. Herein, the authors used aptamer as the capture probe to prepare an aptasensor with enhanced stability.
Findings
The proposed aptasensor exhibited a wide linearity to cadmium in the range of 0.001–0.100 µg/L with a low detection limit of 0.005×10−3 µg/L. The glassy carbon electrodes with Ag-Au BMNPs showed a lower detection limit.
Originality/value
This aptasensor has good reproducibility, stability and repeatability and is cost-effective to regenerate. The specificity and selectivity of the novel modified electrode is tested in the presence of other interfering metal ions such as Fe2+, Mn2+, Mg2+, Sb3+ and Bi3+. The aptasensor shows 10 times more sensitivity and selectivity for Cd2+ ions.
Details
Keywords
Mulayam Singh Gaur, Rajni Yadav, Mamta Kushwah and Anna Nikolaevna Berlina
This information will be useful in the selection of materials and technology for the detection and removal of mercury ions at a low cost and with high sensitivity and selectivity…
Abstract
Purpose
This information will be useful in the selection of materials and technology for the detection and removal of mercury ions at a low cost and with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity.
Design/methodology/approach
Different nano- and bio-materials allowed for the development of a variety of biosensors – colorimetric, chemiluminescent, electrochemical, whole-cell and aptasensors – are described. The materials used for their development also make it possible to use them in removing heavy metals, which are toxic contaminants, from environmental water samples.
Findings
This review focuses on different technologies, tools and materials for mercury (heavy metals) detection and remediation to environmental samples.
Originality/value
This review gives up-to-date and systemic information on modern nanotechnology methods for heavy metal detection. Different recognition molecules and nanomaterials have been discussed for remediation to water samples. The present review may provide valuable information to researchers regarding novel mercury ions detection sensors and encourage them for further research/development.
Details