Majid Siavashi and Shirzad Iranmehr
The purpose of this study is to analyze a new idea for external flow over a cylinder to increase the heat transfer and reduce pressure drop. Using wedge-shaped porous media in the…
Abstract
Purpose
The purpose of this study is to analyze a new idea for external flow over a cylinder to increase the heat transfer and reduce pressure drop. Using wedge-shaped porous media in the front and wake regions of the cylinder can improve its hydrodynamic, and the rotating flow in the wake region can enhance the heat transfer with increased porous–liquid contact. Permeability plays a vital role, as a high-permeable medium improves heat transfer, whereas a low-permeable region improves the hydrodynamic.
Design/methodology/approach
Therefore, in the current research, external forced convection of nanofluid laminar flow over a bundle of cylinders is simulated using a two-phase mixture model. Four cases with different porous blocks around the cylinder are assessed: rectangular porous; wedge shape in trailing edge (TEP); wedge shape in leading and trailing edges (LTEP); and no porous block case. Also, three different lengths of wedge-shaped regions are considered for TEP and LTEP cases.
Findings
Results are presented in terms of Nusselt (Nu), Euler (Eu) and the performance evaluation criterion (PEC) numbers for various Reynolds (Re) and Darcy (Da) numbers.
Originality/value
It was found that in most situations, LTEP case provides the highest Nu and PEC values. Also, optimal Re and porous medium length exist to maximize PEC, depending on the values of Da and nanofluid volume fraction.
Details
Keywords
Marjan Sharifi, Majid Siavashi and Milad Hosseini
Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex…
Abstract
Purpose
Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex porous media. In recent years, researchers have increasingly explored the use of porous media to improve the heat transfer processes. The lattice Boltzmann method (LBM) is one of the most effective techniques for simulating heat transfer in such media. However, the application of the LBM to study radiation in complex geometries that contain curved boundaries, as found in many porous media, has been limited.
Design/methodology/approach
The numerical evaluation of the effect of the radiation-conduction parameter and extinction coefficient on temperature and incident radiation distributions demonstrates that the proposed LBM algorithm provides highly accurate results across all cases, compared to those found in the literature or those obtained using the finite volume method (FVM) with the discrete ordinates method (DOM) for radiative information.
Findings
For the case with a conduction-radiation parameter equal to 0.01, the maximum relative error is 1.9% in predicting temperature along vertical central line. The accuracy improves with an increase in the conduction-radiation parameter. Furthermore, the comparison between computational performances of two approaches reveals that the LBM-LBM approach performs significantly faster than the FVM-DOM solver.
Originality/value
The difficulty of radiative modeling in combined problems involving irregular boundaries has led to alternative approaches that generally increase the computational expense to obtain necessary radiative details. To address the limitations of existing methods, this study presents a new approach involving a coupled lattice Boltzmann and first-order blocked-off technique to efficiently model conductive-radiative heat transfer in complex geometries with participating media. This algorithm has been developed using the parallel lattice Boltzmann solver.