Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 14 August 2024

Mahsa Fekrisari and Jussi Kantola

This paper aims to identify potential barriers to Industry 4.0 adoption for manufacturers and examine the changes that must be made to production processes to implement Industry…

921

Abstract

Purpose

This paper aims to identify potential barriers to Industry 4.0 adoption for manufacturers and examine the changes that must be made to production processes to implement Industry 4.0 successfully. It aims to develop technology by assisting with the successful implementation of Industry 4.0 in the manufacturing process by using smart system techniques.

Design/methodology/approach

Multiple case studies are used in this paper by using the smart system and Matlab, and semi-structured interviews are used to collect qualitative data.

Findings

Standardization, management support, skills, and costs have been cited as challenges for most businesses. Most businesses struggle with data interoperability. Complexity, information security, scalability, and network externalities provide challenges for some businesses. Environmental concerns are less likely to affect businesses with higher degrees of maturity. Additionally, it enables the Technical Director’s expertise to participate in the measurement using ambiguous input and output using language phrases. The outcomes of the numerous tests conducted on the approaches are extensively studied in the provided method.

Originality/value

In this research, a multiple-case study aims to carry out a thorough investigation of the issue in its actual setting.

Details

The TQM Journal, vol. 36 no. 9
Type: Research Article
ISSN: 1754-2731

Keywords

Access Restricted. View access options
Article
Publication date: 14 January 2019

Mahsa Fekri Sari and Soroush Avakh Darestani

The overall equipment effectiveness (OEE) is a powerful metric in production as well as one of the methods in evaluating function for measuring productivity in the production…

589

Abstract

Purpose

The overall equipment effectiveness (OEE) is a powerful metric in production as well as one of the methods in evaluating function for measuring productivity in the production process. In the existing method, measuring OEE is based on three main elements consisting availability, performance and quality. The purpose of this paper is to evaluate the recognized metrics of production: OEE and overall line effectiveness (OLE) by using smart systems techniques.

Design/methodology/approach

In this paper, to improve the calculative methods and productivity with three methods: measuring OEE using Mamdani fuzzy inference systems (FIS), measuring OEE using Sugeno FIS, and measuring OLE using FIS and artificial neural networks (ANNs) are proposed.

Findings

The proposed methodologies aim to decrease some weaknesses of OEE and OLE methods by exploiting intelligent system techniques, such as FIS and ANNs. In particular, this research will solve the following issues that occur in manual and automatic data gathering. This technique is an effective way of measuring OEE and OLE with regard to different weights of losses as well as difference in the weight of the machines. In addition, it allows the operator’s knowledge to take a part in the measurement using uncertain input and output with implementation of linguistic terms. The presented method is the details and capabilities of those methods in various tested scenarios, and the results have been fully analyzed.

Originality/value

In relation to other methodologies, it allows the operator’s knowledge to take part in the measurement using uncertain input and output with implementation of linguistic terms. The presented method is the details and capabilities of those methods in various tested scenarios, and the results have been fully analyzed.

Details

Journal of Quality in Maintenance Engineering, vol. 25 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 2 of 2
Per page
102050