Mohammadreza Rahimi, Rouhollah Mehdinavaz Aghdam, Mahmoud Heydarzadeh Sohi, Ali Hossein Rezayan and Maryam Ettelaei
This paper aims to investigate the impact of anodizing time and heat treatment on morphology, phase and corrosion resistance of formed coating. To characterize the anodic oxide…
Abstract
Purpose
This paper aims to investigate the impact of anodizing time and heat treatment on morphology, phase and corrosion resistance of formed coating. To characterize the anodic oxide layer, X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) that was equipped with energy dispersive spectroscopy (EDS) was hired. The corrosion behavior of oxide-coated samples was estimated by electrochemical polarization test in simulated body fluid (SBF).
Design/methodology/approach
Anodic oxidation method is applied to reinforce the corrosion and biological properties of biomaterials in the biomedical industry. In this paper, the alkaline NaOH (1 M) electrolyte was used for AZ31 magnesium alloy anodizing accompanied by heat treatment in the air.
Findings
It can be concluded that the best corrosion resistance belongs to the 10 min anodic oxidized sample and among the heat-treated samples the 30 min anodized sample represented the lowest corrosion rate.
Originality/value
In this study, to the best of the authors’ knowledge for the first time, this paper describes the effect of anodizing process time on NaOH (1 M) electrolyte at 3 V on corrosion behavior of magnesium AZ31 alloy with an alternate method to change the phase composition of the formed oxide layer. The morphology and composition of the obtained anodic oxide layer were investigated under the results of SEM, EDS and XRD. The corrosion behavior of the oxide coatings layer fabricated on the magnesium-based substrate was studied by the potentiodynamic polarization test in the SBF solution.
Details
Keywords
Bhavya Swathi I., Suvarna Raju L. and Perumalla Janaki Ramulu
Friction stir processing (FSP) is overviewed with the process variables, along with the thermal aspect of different metals.
Abstract
Purpose
Friction stir processing (FSP) is overviewed with the process variables, along with the thermal aspect of different metals.
Design/methodology/approach
With its inbuilt advantages, FSP is used to reduce the failure in the structural integrity of the body panels of automobiles, airplanes and lashing rails. FSP has excellent process ability and surface treatability with good corrosion resistance and high strength at elevated temperatures. Process parameters such as rotation speed of the tool, traverse speed, tool tilt angle, groove design, volume fraction and increase in number of tool passes should be considered for generating a processed and defect-free surface of the workpiece.
Findings
FSP process is used for modifying the surface by reinforcement of composites to improve the mechanical properties and results in the ultrafine grain refinement of microstructure. FSP uses the frictional heat and mechanical deformation for achieving the maximum performance using the low-cost tool; the production time is also very less.
Originality/value
100