Search results
1 – 3 of 3Ismail Hmeidi, Mahmoud Al-Ayyoub, Nizar A. Mahyoub and Mohammed A. Shehab
Multi-label Text Classification (MTC) is one of the most recent research trends in data mining and information retrieval domains because of many reasons such as the rapid growth…
Abstract
Purpose
Multi-label Text Classification (MTC) is one of the most recent research trends in data mining and information retrieval domains because of many reasons such as the rapid growth of online data and the increasing tendency of internet users to be more comfortable with assigning multiple labels/tags to describe documents, emails, posts, etc. The dimensionality of labels makes MTC more difficult and challenging compared with traditional single-labeled text classification (TC). Because it is a natural extension of TC, several ways are proposed to benefit from the rich literature of TC through what is called problem transformation (PT) methods. Basically, PT methods transform the multi-label data into a single-label one that is suitable for traditional single-label classification algorithms. Another approach is to design novel classification algorithms customized for MTC. Over the past decade, several works have appeared on both approaches focusing mainly on the English language. This work aims to present an elaborate study of MTC of Arabic articles.
Design/methodology/approach
This paper presents a novel lexicon-based method for MTC, where the keywords that are most associated with each label are extracted from the training data along with a threshold that can later be used to determine whether each test document belongs to a certain label.
Findings
The experiments show that the presented approach outperforms the currently available approaches. Specifically, the results of our experiments show that the best accuracy obtained from existing approaches is only 18 per cent, whereas the accuracy of the presented lexicon-based approach can reach an accuracy level of 31 per cent.
Originality/value
Although there exist some tools that can be customized to address the MTC problem for Arabic text, their accuracies are very low when applied to Arabic articles. This paper presents a novel method for MTC. The experiments show that the presented approach outperforms the currently available approaches.
Details
Keywords
Mahmoud Al-Ayyoub, Ahmed Alwajeeh and Ismail Hmeidi
The authorship authentication (AA) problem is concerned with correctly attributing a text document to its corresponding author. Historically, this problem has been the focus of…
Abstract
Purpose
The authorship authentication (AA) problem is concerned with correctly attributing a text document to its corresponding author. Historically, this problem has been the focus of various studies focusing on the intuitive idea that each author has a unique style that can be captured using stylometric features (SF). Another approach to this problem, known as the bag-of-words (BOW) approach, uses keywords occurrences/frequencies in each document to identify its author. Unlike the first one, this approach is more language-independent. This paper aims to study and compare both approaches focusing on the Arabic language which is still largely understudied despite its importance.
Design/methodology/approach
Being a supervised learning problem, the authors start by collecting a very large data set of Arabic documents to be used for training and testing purposes. For the SF approach, they compute hundreds of SF, whereas, for the BOW approach, the popular term frequency-inverse document frequency technique is used. Both approaches are compared under various settings.
Findings
The results show that the SF approach, which is much cheaper to train, can generate more accurate results under most settings.
Practical implications
Numerous advantages of efficiently solving the AA problem are obtained in different fields of academia as well as the industry including literature, security, forensics, electronic markets and trading, etc. Another practical implication of this work is the public release of its sources. Specifically, some of the SF can be very useful for other problems such as sentiment analysis.
Originality/value
This is the first study of its kind to compare the SF and BOW approaches for authorship analysis of Arabic articles. Moreover, many of the computed SF are novel, while other features are inspired by the literature. As SF are language-dependent and most existing papers focus on English, extra effort must be invested to adapt such features to Arabic text.
Details
Keywords
Meriem Laifa and Djamila Mohdeb
This study provides an overview of the application of sentiment analysis (SA) in exploring social movements (SMs). It also compares different models for a SA task of Algerian…
Abstract
Purpose
This study provides an overview of the application of sentiment analysis (SA) in exploring social movements (SMs). It also compares different models for a SA task of Algerian Arabic tweets related to early days of the Algerian SM, called Hirak.
Design/methodology/approach
Related tweets were retrieved using relevant hashtags followed by multiple data cleaning procedures. Foundational machine learning methods such as Naive Bayes, Support Vector Machine, Logistic Regression (LR) and Decision Tree were implemented. For each classifier, two feature extraction techniques were used and compared, namely Bag of Words and Term Frequency–Inverse Document Frequency. Moreover, three fine-tuned pretrained transformers AraBERT and DziriBERT and the multilingual transformer XLM-R were used for the comparison.
Findings
The findings of this paper emphasize the vital role social media played during the Hirak. Results revealed that most individuals had a positive attitude toward the Hirak. Moreover, the presented experiments provided important insights into the possible use of both basic machine learning and transfer learning models to analyze SA of Algerian text datasets. When comparing machine learning models with transformers in terms of accuracy, precision, recall and F1-score, the results are fairly similar, with LR outperforming all models with a 68 per cent accuracy rate.
Originality/value
At the time of writing, the Algerian SM was not thoroughly investigated or discussed in the Computer Science literature. This analysis makes a limited but unique contribution to understanding the Algerian Hirak using artificial intelligence. This study proposes what it considers to be a unique basis for comprehending this event with the goal of generating a foundation for future studies by comparing different SA techniques on a low-resource language.
Details