Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 16 October 2023

Maedeh Gholamazad, Jafar Pourmahmoud, Alireza Atashi, Mehdi Farhoudi and Reza Deljavan Anvari

A stroke is a serious, life-threatening condition that occurs when the blood supply to a part of the brain is cut off. The earlier a stroke is treated, the less damage is likely…

122

Abstract

Purpose

A stroke is a serious, life-threatening condition that occurs when the blood supply to a part of the brain is cut off. The earlier a stroke is treated, the less damage is likely to occur. One of the methods that can lead to faster treatment is timely and accurate prediction and diagnosis. This paper aims to compare the binary integer programming-data envelopment analysis (BIP-DEA) model and the logistic regression (LR) model for diagnosing and predicting the occurrence of stroke in Iran.

Design/methodology/approach

In this study, two algorithms of the BIP-DEA and LR methods were introduced and key risk factors leading to stroke were extracted.

Findings

The study population consisted of 2,100 samples (patients) divided into six subsamples of different sizes. The classification table of each algorithm showed that the BIP-DEA model had more reliable results than the LR for the small data size. After running each algorithm, the BIP-DEA and LR algorithms identified eight and five factors as more effective risk factors and causes of stroke, respectively. Finally, predictive models using the important risk factors were proposed.

Originality/value

The main objective of this study is to provide the integrated BIP-DEA algorithm as a fast, easy and suitable tool for evaluation and prediction. In fact, the BIP-DEA algorithm can be used as an alternative tool to the LR model when the sample size is small. These algorithms can be used in various fields, including the health-care industry, to predict and prevent various diseases before the patient’s condition becomes more dangerous.

Details

Journal of Modelling in Management, vol. 19 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Access Restricted. View access options
Article
Publication date: 8 March 2021

Jafar Pourmahmoud and Maedeh Gholam Azad

The purpose of this paper is to propose the data envelopment analysis (DEA) model that can be used as binary-valued data. Often the basic DEA models were developed by assuming…

185

Abstract

Purpose

The purpose of this paper is to propose the data envelopment analysis (DEA) model that can be used as binary-valued data. Often the basic DEA models were developed by assuming that all of the data are non-negative. However, there are situations where all data are binary. As an example, the information on many diseases in health care is binary data. The existence of binary data in traditional DEA models may change the behavior of the production possibility set (PPS). This study defines a binary summation operator, expresses the modified principles and introduces the extracted PPS of axioms. Furthermore, this study proposes a binary integer programming of DEA (BIP-DEA) for assessing the efficiency scores to use as an alternate tool in prediction.

Design/methodology/approach

In this study, the extracted PPS of modified axioms and the BIP-DEA model for assessing the efficiency score is proposed.

Findings

The binary integer model was proposed to eliminate the challenges of the binary-value data in DEA.

Originality/value

The importance of the proposed model for many fields including the health-care industry is that it can predict the occurrence or non-occurrence of the events, using binary data. This model has been applied to evaluate the most important risk factors for stroke disease and mechanical disorders. The targets set by this model can help to diagnose earlier the disease and increase the patients’ chances of recovery.

Details

Journal of Modelling in Management, vol. 17 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

1 – 2 of 2
Per page
102050