Search results

1 – 10 of 21
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 August 2000

M.O. Hamdan, M.A. Al‐Nimr and M.K. Alkam

Investigates numerically the mechanism of enhancing heat transfer by using porous substrate. The numerical investigation is carried out for transient forced convection in the…

724

Abstract

Investigates numerically the mechanism of enhancing heat transfer by using porous substrate. The numerical investigation is carried out for transient forced convection in the developing region of a parallel‐plate channel partially filled with a porous medium. A porous substrate is inserted in the channel core in order to reduce the boundary layer thickness and hence, enhance heat transfer. Darcy‐Brinkman‐Forchheimer model is used to simulate the physical problem. Results of the current model show that the existence of the porous substrate may improve the Nusselt number at the fully developed region by a factor of four and even higher depending on the value of Darcy number. It is found that the maximum Nusselt number is achieved at an optimum thickness. Also, the study shows that partially filled channels have better thermal performance than the totally filled ones. However, there is an optimum thickness of porous substrate, beyond it the Nusselt number starts to decline.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 1 September 1998

M.K. Alkam, M.A. Al‐Nimr and Z. Mousa

This study aims to numerically investigate the transient forced convection of non‐Newtonian fluid in the entrance region of porous concentric annuli. The hydrodynamic behavior of…

551

Abstract

This study aims to numerically investigate the transient forced convection of non‐Newtonian fluid in the entrance region of porous concentric annuli. The hydrodynamic behavior of the flow is assumed to be steady and it is modeled using the non‐Darcian flow and the power law models. The transients in the thermal behaviors result from sudden changes in the boundary temperatures. The effects of different fluid flow and solid matrix parameters on the thermal behavior of the annular are investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 4 January 2019

Hossein Arasteh, Mohammad Reza Salimpour and Mohammad Reza Tavakoli

In the present research, a numerical investigation is carried out to study the fluid flow and heat transfer in a double-pipe, counter-flow heat exchanger exploiting metal foam…

279

Abstract

Purpose

In the present research, a numerical investigation is carried out to study the fluid flow and heat transfer in a double-pipe, counter-flow heat exchanger exploiting metal foam inserts partially in both pipes. The purpose of this study is to achieve the optimal distribution of a fixed volume of metal foam throughout the pipes which provides the maximum heat transfer rate with the minimum pressure drop increase.

Design/methodology/approach

The governing equations are solved using the finite volume method. The metal foams are divided into different number of parts and positioned at different locations. The number of metal foam parts, their placements and their volume ratios in each pipe are sought to reach the optimal conditions. The four-piece metal foam with optimized placement and partitioning volume ratios is selected as the best layout. The effects of the permeability of metal foam on the Nusselt number, the performance evaluation criteria (PEC) and the overall heat transfer coefficient are investigated.

Findings

It was observed that the heat transfer rate, the overall heat transfer coefficient and the effectiveness of the heat exchanger can be improved as high as 69, 124 and 9 per cent, respectively, while the highest value of PEC is 1.36.

Practical implications

Porous materials are widely used in thermo-fluid systems such as regenerators, heat sinks, solar collectors and heat exchangers.

Originality/value

Having less pressure drop than fully filled heat exchangers, partially filled heat exchangers with partitioned metal foams distributed optimally enhance heat transfer rate more economically.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 6 February 2017

Mustafa Turkyilmazoglu

The purpose of this study is to target the solution of nonlinear porous fin problem. In contrast to the various complicated numerical or analytical approximate procedures existing…

94

Abstract

Purpose

The purpose of this study is to target the solution of nonlinear porous fin problem. In contrast to the various complicated numerical or analytical approximate procedures existing in the literature used to approximate the temperature field over a porous fin, this study outlines a direct method based on series expansion of the temperature in the vicinity of the mounted surface, eventually requiring no numerical treatment at all to resolve the temperature field.

Design/methodology/approach

This study uses a direct method based on series expansion of the temperature in the vicinity of the mounted surface, eventually requiring no numerical treatment at all to resolve the temperature field.

Findings

Explicit closed-form formulae for the fin tip temperature as well as for the heat transfer rate, hence for the fin efficiency, which are functions of the porosity parameter and Biot number, are provided. The thresholds and the convergence regions regarding the physical parameters of the resulting approximations are easy to determine from the residual formula.

Originality/value

The novelty of the method is that the accuracy of the solution is controllable and can be gained up to any significant digit of desire by increasing the number of terms in the series solution.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 1 August 2006

Weizhong Dai, Hertong Song, Shengjun Su and Raja Nassar

To develop a numerical method for solving hyperbolic two‐step micro heat transport equations, which have attracted attention in thermal analysis of thin metal films exposed to…

319

Abstract

Purpose

To develop a numerical method for solving hyperbolic two‐step micro heat transport equations, which have attracted attention in thermal analysis of thin metal films exposed to ultrashort‐pulsed lasers.

Design/methodology/approach

An energy estimation for the hyperbolic two‐step model in a three‐dimensional (3D) micro sphere irradiated by ultrashort‐pulsed lasers is first derived, and then a finite difference scheme for solving the hyperbolic two‐step model based on the energy estimation is developed. The scheme is shown to be unconditionally stable and satisfies a discrete analogue of the energy estimation. The method is illustrated by investigating the heat transfer in a micro gold sphere exposed to ultrashort‐pulsed lasers.

Findings

Provides information on normalized electron temperature change with time on the surface of the sphere, and shows the changes in electron and lattice temperatures.

Research limitations/implications

The hyperbolic two‐step model is considered under the assumption of constant thermal properties.

Practical implications

A useful tool to investigate the temperature change in a micro sphere irradiated by ultrashort‐pulsed lasers.

Originality/value

Provides a new unconditionally stable finite difference scheme for solving the hyperbolic two‐step model in a 3D micro sphere irradiated by ultrashort‐pulsed lasers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 1 April 2005

Bassam A/K and Abu‐Hijleh

The aim of this work is to determine the optimal number and location of the fin(s) for maximum laminar forced convection heat transfer from a cylinder with multiple high…

768

Abstract

Purpose

The aim of this work is to determine the optimal number and location of the fin(s) for maximum laminar forced convection heat transfer from a cylinder with multiple high conductivity radial fins on its outer surface in cross‐flow, i.e. Nusselt number, over a range of Reynolds numbers.

Design/methodology/approach

The effect of several combinations of number of fins, fin height, and fin(s) tangential location on the average Nusselt number was studied over the range of Reynolds numbers (5‐150). The problem was investigated numerically using finite difference method over a stretched grid. The optimal number and placement of the fins, for maximum Nusselt number, was determined for several combinations of Reynolds number and fin height. The percentage improvement in heat transfer per fin(s) unit length, i.e. cost‐efficiency, was also studied.

Findings

The results indicate that the fin(s) combination with the highest normalised Nusselt number is not necessarily the combination that results in the highest fin cost‐efficiency.

Originality/value

The results of the study can be used to design highly efficient cross‐flow forced convection heat transfer configurations from a horizontal cylinder with minimum cost.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 3 April 2017

Mourad Moderres, Said Abboudi, Malika Ihdene, Sofiane Aberkane and Abderahmane Ghezal

Double-diffusive convection within a tri-dimensional in a horizontal annulus partially filled with a fluid-saturated porous medium is numerically investigated. The aim of this…

153

Abstract

Purpose

Double-diffusive convection within a tri-dimensional in a horizontal annulus partially filled with a fluid-saturated porous medium is numerically investigated. The aim of this work is to understand the effects of a source of heat and solute on the fluid flow and heat and mass transfer rates.

Design/methodology/approach

In the formulation of the problem, the Darcy–Brinkman–Forchheimer model is adopted to the fluid flow in the porous annulus. The laminar flow regime is considered under steady state conditions. Moreover, the transport equation for continuity, momentum, energy and mass transfer are solved using the Patankar–Spalding technique.

Findings

Through this investigation, the predicted results for both average Nusselt and Sherwood numbers were correlated in terms of Lewis number, thermal Grashof number and buoyancy ration. A comparison was made with the published results and a good agreement was found.

Originality/value

The paper’s results are validated by favorable comparisons with previously published results. The results of the problem are presented in graphical forms and discussed. This paper aims to study the behavior of the flow structure and heat transfer and mass for different parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 1 April 2005

T.K. Aldoss, M.A. Al‐Nimr and A.F. Khadrawi

The transient hydrodynamics and thermal behavior of free convection flow over an isothermal vertical flat plate is investigated.

345

Abstract

Purpose

The transient hydrodynamics and thermal behavior of free convection flow over an isothermal vertical flat plate is investigated.

Design/methodology/approach

The study focuses on the role of the local acceleration term in the magnetohydrodynamic (MHD) momentum equation. A finite difference method based on a second‐order differential equation is used to solve the differential equations.

Findings

It is found that the local acceleration term has insignificant effect on the flow behavior especially at large values of magnetic forces. Also, it is found that the effect of the magnetic forces on the flow hydrodynamics behavior is significant but its effect on the thermal behavior is insignificant. It has been realized that the local acceleration term is usually small compared to the magnetic retarding force, and hence can be neglected.

Research limitations/implications

A quantitative description of the operating and geometrical parameters within which the local acceleration term may be significant is not available in the literature yet. Also, the authors' intention is to improve physical understanding of the hydrodynamic and thermal behaviors of the present problem.

Originality/value

The study provides results concerning the thermal behavior of free convection flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 7 July 2023

Kiran Kumar K, Kotresha Banjara and Kishan Naik

This study aims to present the numerical analysis of exergy transfer and irreversibility through the discrete filling of high-porosity aluminum metal foams inside the horizontal…

61

Abstract

Purpose

This study aims to present the numerical analysis of exergy transfer and irreversibility through the discrete filling of high-porosity aluminum metal foams inside the horizontal pipe.

Design/methodology/approach

In this study, the heater is embedded on the pipe’s circumference and is assigned with known heat input. To enhance the heat transfer, metal foam of 10 pores per inch with porosity 0.95 is filled into the pipe. In filling, two kinds of arrangements are made, in the first arrangement, the metal foam is filled adjacent to the inner wall of the pipe [Model (1)–(3)], and in the second arrangement, the foam is located at the center of the pipe [Models (4)–(6)]. So, six different models are examined in this research for a fluid velocity ranging from 0.7 to7 m/s under turbulent flow conditions. Darcy Extended Forchheimer is combined with local thermal non-equilibrium models for forecasting the flow and heat transfer features via metal foams.

Findings

The numerical methodology implemented in this study is confirmed by comparing the outcomes with the experimental outcomes accessible in the literature and found a fairly good agreement between them. The application of the second law of thermodynamics via metal foams is the novelty of current investigation. The evaluation of thermodynamic performance includes the parameters such as mean exergy-based Nusselt number (Nue), rate of irreversibility, irreversibility distribution ratio (IDR), merit function (MF) and non-dimensional exergy destruction (I*). In all the phases, Models (1)–(3) exhibit better performance than Models (4)–(6).

Practical implications

The present study helps to enhance the heat transfer performance with the introduction of metal foams and reveals the importance of available energy (exergy) in the system which helps in arriving at optimum design criteria for the thermal system.

Originality/value

The uniqueness of this study is to analyze the impact of discrete metal foam filling on exergy and irreversibility in a pipe under turbulent flow conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 9 August 2021

Rouhollah Moosavi, Mehdi Banihashemi and Cheng-Xian Lin

This paper aims to numerically investigate the thermal performance evaluation of a microchannel with different porous media insert configurations.

179

Abstract

Purpose

This paper aims to numerically investigate the thermal performance evaluation of a microchannel with different porous media insert configurations.

Design/methodology/approach

Heat transfer and pressure drop of fluid flow through a three-dimensional (3D) microchannel with different partially and filled porous media insert configurations are investigated numerically. The number of divisions and positions of porous material inside the microchannel for 12 different arrangements are considered. A control volume method is used for single-phase laminar flow with the Darcy–Forchheimer model used for the porous media. The geometry of the problem consists of a microchannel with a rectangular cross-section of 0.4 mm × 0.2 mm and length 20 mm, with a stainless steel porous material insert with a porosity coefficient of ε = 0.32 and a Darcy number of Da = 2.7 × 10−4.

Findings

Numerical results show that when the transverse arrangement is used, as the number of partitions increases, the thermal performance is improved and the heat transfer increases up to 300% compared to that of the plain microchannel. Comparing the obtained results from the microchannels with transverse and longitudinal configurations, at low Reynolds numbers, the transverse arrangement of porous blocks and at high Reynold numbers, the longitudinal arrangement present the best thermal performance which is virtually four times higher compared to the obtained Nu numbers from the plain microchannel. The results show that as the volume of porous material is constant in the cases with various transverse porous blocks, the pressure drop is not changed in these cases. Also, the highest thermal performance ratio is when the porous material is placed along the walls in a longitudinal direction.

Originality/value

To the best knowledge of the authors, in the previous research, the effect of the arrangement and location of the porous medium in the transverse and longitudinal direction in the microchannel and their effect in different states on the behavior of flow and heat transfer has not been numerically investigated. In this study, the porous media configuration and its placement in a 3D microchannel were numerically studied. The effect of porous material layout and configurations in different longitudinal and transverse directions on the pressure drop, heat transfer and thermal performance in the 3D microchannel is investigated numerically.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 21
Per page
102050