Search results
1 – 6 of 6Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…
Abstract
Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.
Details
Keywords
S. Lasquellec, M.F. Benkhoris and M. Féliachi
A magnetic study has been linked to an electrical survey to improve a saturated synchronous machine model. The machine is supplied by a sinusoidal voltage source, but the…
Abstract
A magnetic study has been linked to an electrical survey to improve a saturated synchronous machine model. The machine is supplied by a sinusoidal voltage source, but the developed model could be extended to a non‐sinusoidal case. The last one corresponds to electrical machines supplied by power electronic converters. First, the machine magnetic state is analysed from a numerical calculation based on the finite element method. Saturation laws are established. The results show that some parameters which were considered constant values vary with the saturation level. Second, we introduce the saturation laws in the machine electrical equations. The voltage supplied machine is simulated for an electrical transient state. Finally, the developed model is compared to a reference one which uses experimental constant parameters. The simulation results show that the proposed electromagnetic laws significantly modify the machine currents’ waveforms.
Details
Keywords
Introduces the fourth and final chapter of the ISEF 1999 Proceedings by stating electric and magnetic fields are influenced, in a reciprocal way, by thermal and mechanical fields…
Abstract
Introduces the fourth and final chapter of the ISEF 1999 Proceedings by stating electric and magnetic fields are influenced, in a reciprocal way, by thermal and mechanical fields. Looks at the coupling of fields in a device or a system as a prescribed effect. Points out that there are 12 contributions included ‐ covering magnetic levitation or induction heating, superconducting devices and possible effects to the human body due to electric impressed fields.
Details
Keywords
Gerasimos G. Rigatos, Pierluigi Siano, Mohammed S. Al-Numay, Bilal Sari and Masoud Abbaszadeh
The purpose of this article is to treat the nonlinear optimal control problem in EV traction systems which are based on 5-phase induction motors. Five-phase permanent magnet…
Abstract
Purpose
The purpose of this article is to treat the nonlinear optimal control problem in EV traction systems which are based on 5-phase induction motors. Five-phase permanent magnet synchronous motors and five-phase asynchronous induction motors (IMs) are among the types of multiphase motors one can consider for the traction system of electric vehicles (EVs). By distributing the required power in a large number of phases, the power load of each individual phase is reduced. The cumulative rates of power in multiphase machines can be raised without stressing the connected converters. Multiphase motors are also fault tolerant because such machines remain functional even if failures affect certain phases.
Design/methodology/approach
A novel nonlinear optimal control approach has been developed for five-phase IMs. The dynamic model of the five-phase IM undergoes approximate linearization using Taylor series expansion and the computation of the associated Jacobian matrices. The linearization takes place at each sampling instance. For the linearized model of the motor, an H-infinity feedback controller is designed. This controller achieves the solution of the optimal control problem under model uncertainty and disturbances.
Findings
To select the feedback gains of the nonlinear optimal (H-infinity) controller, an algebraic Riccati equation has to be solved repetitively at each time-step of the control method. The global stability properties of the control loop are demonstrated through Lyapunov analysis. Under moderate conditions, the global asymptotic stability properties of the control scheme are proven. The proposed nonlinear optimal control method achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs.
Research limitations/implications
Comparing to other nonlinear control methods that one could have considered for five-phase IMs, the presented nonlinear optimal (H-infinity) control approach avoids complicated state-space model transformations, is of proven global stability and its use does not require the model of the motor to be brought into a specific state-space form. The nonlinear optimal control method has clear implementation stages and moderate computational effort.
Practical implications
In the transportation sector, there is progressive transition to EVs. The use of five-phase IMs in EVs exhibits specific advantages, by achieving a more balanced distribution of power in the multiple phases of the motor and by providing fault tolerance. The study’s nonlinear optimal control method for five-phase IMs enables high performance for such motors and their efficient use in the traction system of EVs.
Social implications
Nonlinear optimal control for five-phase IMs supports the deployment of their use in EVs. Therefore, it contributes to the net-zero objective that aims at eliminating the emission of harmful exhaust gases coming from human activities. Most known manufacturers of vehicles have shifted to the production of all-electric cars. The study’s findings can optimize the traction system of EVs thus also contributing to the growth of the EV industry.
Originality/value
The proposed nonlinear optimal control method is novel comparing to past attempts for solving the optimal control problem for nonlinear dynamical systems. It uses a novel approach for selecting the linearization points and a new Riccati equation for computing the feedback gains of the controller. The nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations.
Details
Keywords
Adel Oubelaid, Nabil Taib and Toufik Rekioua
The purpose of this paper is the investigation of a new coordinated switching strategy to improve the transient performance of a fuel cell (FC)- supercapacitor (SC) electric…
Abstract
Purpose
The purpose of this paper is the investigation of a new coordinated switching strategy to improve the transient performance of a fuel cell (FC)- supercapacitor (SC) electric vehicle. The proposed switching strategy protects FCs from large currents drawn during abrupt power variations. Furthermore, it compensates the poor FC transient response and suppresses the transient ripples occurring during power source switching instants.
Design/methodology/approach
Coordinated power source switching is achieved using three different transition functions. Vehicle model is fractioned into computational and console subsystems for its simulation using real time (RT) LAB simulator. Blocs containing coordination switching strategy, power sources models and their power electronics interface are placed in the computational subsystem that will be executed, in RT, on one of real time laboratory simulator central processing unit cores.
Findings
Coordination switching strategy resulted in reducing transient power ripples by 90% and direct current (DC) bus voltage fluctuations by 50%. Switching through transition functions compensated the difference between FC and SC transient responses responsible for transient power ripples. Among the three proposed transition functions, linear transition function resulted in the best transient performances.
Originality/value
The proposed coordinated switching strategy allows the control of the switching period duration. Furthermore, it enables the choice of adequate transition functions that fit the dynamics of power sources undergoing transition. Also, the proposed switching technique is simple and does not require the knowledge of system parameters or the complex control models.
Details
Keywords
Sekharan Sreejith and Sishaj P. Simon
The aim of this paper is to compare the performance of static VAR compensator (SVC) and unified power flow controller (UPFC) in dynamic economic dispatch (DED) problem. DED…
Abstract
Purpose
The aim of this paper is to compare the performance of static VAR compensator (SVC) and unified power flow controller (UPFC) in dynamic economic dispatch (DED) problem. DED schedules the online generator outputs with the predicted load demands over a certain period so that the electric power system is operated most economically. During last decade, flexible alternating current transmission systems (FACTS) devices are broadly used for maximizing the loadability of existing power system transmission networks. However, based on the literature survey, the performance of SVC and UPFC incorporated in the DED problem and its cost–benefit analysis are not discussed earlier in any of the literature.
Design/methodology/approach
Here, the DED problem is solved applying ABC algorithm incorporating SVC and UPFC. The following conditions are investigated with the incorporation of SVC and UPFC into DED problem: the role of SVC and UPFC for improving the power flow and voltage profile and the approximate analysis on cost recovery and payback period with SVC and UPFC in DED problem.
Findings
The incorporation of FACTS devices reduces the generation cost and improves the stability of the system. The percentage cost recovered with FACTS devices is estimated approximately using equated monthly installment (EMI) and non-EMI scheme. It is clear from the illustrations that the installation of FACTS devices is profitable after a certain period.
Research limitations/implications
In this research work, the generation cost with FACTS devices is only taken into account while calculating the profit. The other benefits like congestion management, cost gained due to land and cost due to stability issues are not considered. For future work, these things can be considered while calculating the benefit.
Originality/value
The originality of the work is incorporation of FACTS devices in DED problem and approximate estimation of recovery cost with FACTS devices in DED problem.
Details