Search results
1 – 3 of 3V. Giuliani, B. de Witt, M. Salluzzi, R.J. Hugo and P. Gu
Particle velocity is a critical factor that can affect the deposition quality in manufacturing processes involving the use of a laser source and a powder‐particle delivery nozzle…
Abstract
Purpose
Particle velocity is a critical factor that can affect the deposition quality in manufacturing processes involving the use of a laser source and a powder‐particle delivery nozzle. The purpose of this paper is to propose a method to detect the speed and trajectory of particles during a laser deposition process.
Design/methodology/approach
A low‐power laser light sheet technique is used to illuminate particles emerging from a custom designed powder delivery nozzle. Light scattered by the particles is detected by a high‐speed camera. Image processing on the acquired images was performed using both edge detection and Hough transform algorithms.
Findings
The experimental data were analyzed and used to estimate particle velocity, trajectory and the velocity profile at the nozzle exit. The results have demonstrated that the particle trajectory remains linear between the nozzle exit and the deposition plate and that the particle velocity can be considered a constant.
Originality/value
The use of low‐power laser light sheet illumination facilitates the detection of isolated particle streaks even in high‐powder flow rate condition. Identification of particle streaks in three subsequent images ensures that particle velocity vectors are in the plane of illumination, and also offers the potential to evaluate in a single measurement both velocity and particle size based on the observed scattered characteristics. The method provides a useful simple tool to investigate particle dynamics in a rapid prototyping application as well as other research fields involving the use of powder delivery nozzles.
Details
Keywords
Jonas Näsström, Frank Brückner and Alexander F.H. Kaplan
The steadily growing popularity of additive manufacturing (AM) increases the demand for understanding fundamental behaviors of these processes. High-speed imaging (HSI) can be a…
Abstract
Purpose
The steadily growing popularity of additive manufacturing (AM) increases the demand for understanding fundamental behaviors of these processes. High-speed imaging (HSI) can be a useful tool to observe these behaviors, but many studies only present qualitative analysis. The purpose of this paper is to propose an algorithm-assisted method as an intermediate to rapidly quantify data from HSI. Here, the method is used to study melt pool surface profile movement in a cold metal transfer-based (CMT-based) AM process, and how it changes when the process is augmented with a laser beam.
Design/methodology/approach
Single-track wide walls are generated in multiple layers using only CMT, CMT with leading and with trailing laser beam while observing the processes using HSI. The studied features are manually traced in multiple HSI frames. Algorithms are then used for sorting measurement points and generating feature curves for easier comparison.
Findings
Using this method, it is found that the fluctuation of the melt surface in the chosen CMT AM process can be reduced by more than 35 per cent with the addition of a laser beam trailing behind the arc. This indicates that arc and laser can be a viable combination for AM.
Originality/value
The suggested quantification method was used successfully for the laser-arc hybrid process and can also be applied for studies of many other AM processes where HSI is implemented. This can help fortify and expand the understanding of many phenomena in AM that were previously too difficult to measure.
Details
Keywords
Mehmet Ermurat, Mehmet Ali Arslan, Fehmi Erzincanli and Ibrahim Uzman
This paper aims to investigate the effect of four important process parameters (i.e. laser focal distance, travel speed, feeding gas flow rate and standoff distance) on the size…
Abstract
Purpose
This paper aims to investigate the effect of four important process parameters (i.e. laser focal distance, travel speed, feeding gas flow rate and standoff distance) on the size of single clad geometry created by coaxial nozzle-based powder deposition by high power laser.
Design/methodology/approach
Design of experiments (DOE) and statistical analysis methods were both used to find optimum parameter combinations to get minimum sized clad, i.e. clad width and clad height. Factorial experiment arrays were used to design parameter combinations for creating experimental runs. Taguchi optimization methodology was used to find out optimum parameter levels to get minimum sized clad geometry. Response surface method was used to investigate the nonlinearity among parameters and variance analysis was used to assess the effectiveness level of each problem parameters.
Findings
The overall results show that wisely selected four problem parameters have the most prominent effects on the final clad geometry. Generally, minimum clad size was achieved at higher levels of gas flow rate, travel speed and standoff distance and at minimum spot size level of the laser focal distance.
Originality/value
This study presents considerable contributions in assessing the importance level of problems parameters on the optimum single clad geometry created laser-assisted direct metal part fabrication method. This procedure is somewhat complicated in understanding the effects of the selected problem parameters on the outcome. Therefore, DOE methodologies are utilized so that this operation can be better modeled/understood and automated for real life applications. The study also gives future direction for research based on the presented results.
Details