Search results
1 – 10 of 341Amira Aydi, Mohamed Djemel and Mohamed Chtourou
The purpose of this paper is to use the internal model control to deal with nonlinear stable systems affected by parametric uncertainties.
Abstract
Purpose
The purpose of this paper is to use the internal model control to deal with nonlinear stable systems affected by parametric uncertainties.
Design/methodology/approach
The dynamics of a considered system are approximated by a Takagi-Sugeno fuzzy model. The parameters of the fuzzy rules premises are determined manually. However, the parameters of the fuzzy rules conclusions are updated using the descent gradient method under inequality constraints in order to ensure the stability of each local model. In fact, without making these constraints the training algorithm can procure one or several unstable local models even if the desired accuracy in the training step is achieved. The considered robust control approach is the internal model. It is synthesized based on the Takagi-Sugeno fuzzy model. Two control strategies are considered. The first one is based on the parallel distribution compensation principle. It consists in associating an internal model control for each local model. However, for the second strategy, the control law is computed based on the global Takagi-Sugeno fuzzy model.
Findings
According to the simulation results, the stability of all local models is obtained and the proposed fuzzy internal model control approaches ensure robustness against parametric uncertainties.
Originality/value
This paper introduces a method for the identification of fuzzy model parameters ensuring the stability of all local models. Using the resulting fuzzy model, two fuzzy internal model control designs are presented.
Details
Keywords
Gerarda Fattoruso, Roberta Martino, Viviana Ventre and Antonio Violi
Multi-criteria methods represent an adequate tool for solving complex decision problems that provide real support to the decision maker in the choice process. This paper analyzes…
Abstract
Purpose
Multi-criteria methods represent an adequate tool for solving complex decision problems that provide real support to the decision maker in the choice process. This paper analyzes a decision problem that recurs over time using one of the newer methods as the Parsimonious AHP.
Design/methodology/approach
In this paper we integrated the P-AHP with: (1) the weighted average which takes into account the objectivity of the data; (2) ordered weighted average (OWA) aggregation operators that address the subjective nature of the data; (3) the Choquet integral and (4) the Sugeno integral which also considers the uncertain nature of the final ranking as it is defined on a fuzzy measure.
Findings
The present paper proves that variations in the final ranking, due to the different mathematical properties of the selected aggregators, are fundamental to select the best alternative without neglecting any characteristic of the input data. In fact, it is discussed and underlined how and why the best alternative is one that never excels but has very good positions with respect to all aggregation operator rankings.
Originality/value
The aim and innovation presented in this work is the use of the Parsimonious AHP (P-AHP) method in a dynamic way with the use of different aggregation techniques.
Details
Keywords
André de Korvin and Margaret F. Shipley
Determining the proper sample size and frequency of sampling such that quality is assured while financial losses are not unnecessarily incurred is critical to an effective quality…
Abstract
Determining the proper sample size and frequency of sampling such that quality is assured while financial losses are not unnecessarily incurred is critical to an effective quality program. The main purpose of the present work is to design a fuzzy controller to adjust sample sizes and frequency of sampling according to potential fuzzy benefit/loss. A set of fuzzy rules is given where, depending on the antecedents, the sample size and/or sampling frequency may be decreased, remain static or be increased. At any given moment the proportion of defects in the sample determines the firing strength of the rules suggesting an appropriate sample size and sampling frequency. The firing strength is then modified to include an analysis of the decision maker’s belief that as sampling takes place and adjustments are being considered benefit or loss would be incorporated prior to any action or adjustment to sample size and/or frequency.
Details
Keywords
Shabia Shabir Khan and S.M.K. Quadri
As far as the treatment of most complex issues in the design is concerned, approaches based on classical artificial intelligence are inferior compared to the ones based on…
Abstract
Purpose
As far as the treatment of most complex issues in the design is concerned, approaches based on classical artificial intelligence are inferior compared to the ones based on computational intelligence, particularly this involves dealing with vagueness, multi-objectivity and good amount of possible solutions. In practical applications, computational techniques have given best results and the research in this field is continuously growing. The purpose of this paper is to search for a general and effective intelligent tool for prediction of patient survival after surgery. The present study involves the construction of such intelligent computational models using different configurations, including data partitioning techniques that have been experimentally evaluated by applying them over realistic medical data set for the prediction of survival in pancreatic cancer patients.
Design/methodology/approach
On the basis of the experiments and research performed over the data belonging to various fields using different intelligent tools, the authors infer that combining or integrating the qualification aspects of fuzzy inference system and quantification aspects of artificial neural network can prove an efficient and better model for prediction. The authors have constructed three soft computing-based adaptive neuro-fuzzy inference system (ANFIS) models with different configurations and data partitioning techniques with an aim to search capable predictive tools that could deal with nonlinear and complex data. After evaluating the models over three shuffles of data (training set, test set and full set), the performances were compared in order to find the best design for prediction of patient survival after surgery. The construction and implementation of models have been performed using MATLAB simulator.
Findings
On applying the hybrid intelligent neuro-fuzzy models with different configurations, the authors were able to find its advantage in predicting the survival of patients with pancreatic cancer. Experimental results and comparison between the constructed models conclude that ANFIS with Fuzzy C-means (FCM) partitioning model provides better accuracy in predicting the class with lowest mean square error (MSE) value. Apart from MSE value, other evaluation measure values for FCM partitioning prove to be better than the rest of the models. Therefore, the results demonstrate that the model can be applied to other biomedicine and engineering fields dealing with different complex issues related to imprecision and uncertainty.
Originality/value
The originality of paper includes framework showing two-way flow for fuzzy system construction which is further used by the authors in designing the three simulation models with different configurations, including the partitioning methods for prediction of patient survival after surgery. Several experiments were carried out using different shuffles of data to validate the parameters of the model. The performances of the models were compared using various evaluation measures such as MSE.
Details
Keywords
This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a…
Abstract
Purpose
This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a framework for optimizing the reliability of emergency safety barriers.
Design/methodology/approach
The emergency event tree analysis is combined with an interval type-2 fuzzy-set and analytic hierarchy process (AHP) method. In order to the quantitative data is not available, this study based on interval type2 fuzzy set theory, trapezoidal fuzzy numbers describe the expert's imprecise uncertainty about the fuzzy failure probability of emergency safety barriers related to the liquefied petroleum gas storage prevent. Fuzzy fault tree analysis and fuzzy ordered weighted average aggregation are used to address uncertainties in emergency safety barrier reliability assessment. In addition, a critical analysis and some corrective actions are suggested to identify weak points in emergency safety barriers. Therefore, a framework decisions are proposed to optimize and improve safety barrier reliability. Decision-making in this framework uses evidential reasoning theory to identify corrective actions that can optimize reliability based on subjective safety analysis.
Findings
A real case study of a liquefied petroleum gas storage in Algeria is presented to demonstrate the effectiveness of the proposed methodology. The results show that the proposed methodology provides the possibility to evaluate the values of the fuzzy failure probability of emergency safety barriers. In addition, the fuzzy failure probabilities using the fuzzy type-2 AHP method are the most reliable and accurate. As a result, the improved fault tree analysis can estimate uncertain expert opinion weights, identify and evaluate failure probability values for critical basic event. Therefore, suggestions for corrective measures to reduce the failure probability of the fire-fighting system are provided. The obtained results show that of the ten proposed corrective actions, the corrective action “use of periodic maintenance tests” prioritizes reliability, optimization and improvement of safety procedures.
Research limitations/implications
This study helps to determine the safest and most reliable corrective measures to improve the reliability of safety barriers. In addition, it also helps to protect people inside and outside the company from all kinds of major industrial accidents. Among the limitations of this study is that the cost of corrective actions is not taken into account.
Originality/value
Our contribution is to propose an integrated approach that uses interval type-2 fuzzy sets and AHP method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers. In addition, the integration of fault tree analysis and fuzzy ordered averaging aggregation helps to improve the reliability of the fire-fighting system and optimize the corrective actions that can improve the safety practices in liquefied petroleum gas storage tanks.
Details
Keywords
Xin Wang and Chris Gordon
This chapter presents a novel human arm gesture tracking and recognition technique based on fuzzy logic and nonlinear Kalman filtering with applications in crane guidance. A…
Abstract
This chapter presents a novel human arm gesture tracking and recognition technique based on fuzzy logic and nonlinear Kalman filtering with applications in crane guidance. A Kinect visual sensor and a Myo armband sensor are jointly utilised to perform data fusion to provide more accurate and reliable information on Euler angles, angular velocity, linear acceleration and electromyography data in real time. Dynamic equations for arm gesture movement are formulated with Newton–Euler equations based on Denavit–Hartenberg parameters. Nonlinear Kalman filtering techniques, including the extended Kalman filter and the unscented Kalman filter, are applied in order to perform reliable sensor fusion, and their tracking accuracies are compared. A Sugeno-type fuzzy inference system is proposed for arm gesture recognition. Hardware experiments have shown the efficacy of the proposed method for crane guidance applications.
Details
Keywords
In real-world decision-making, high accuracy data analysis is essential in a ubiquitous environment. However, we encounter missing data while collecting user-related data…
Abstract
Purpose
In real-world decision-making, high accuracy data analysis is essential in a ubiquitous environment. However, we encounter missing data while collecting user-related data information because of various privacy concerns on account of a user. This paper aims to deal with incomplete data for fuzzy model identification, a new method of parameter estimation of a Takagi–Sugeno model in the presence of missing features.
Design/methodology/approach
In this work, authors proposed a three-fold approach for fuzzy model identification in which imputation-based linear interpolation technique is used to estimate missing features of the data, and then fuzzy c-means clustering is used for determining optimal number of rules and for the determination of parameters of membership functions of the fuzzy model. Finally, the optimization of the all antecedent and consequent parameters along with the width of the antecedent (Gaussian) membership function is done by gradient descent algorithm based on the minimization of root mean square error.
Findings
The proposed method is tested on two well-known simulation examples as well as on a real data set, and the performance is compared with some traditional methods. The result analysis and statistical analysis show that the proposed model has achieved a considerable improvement in accuracy in the presence of varying degree of data incompleteness.
Originality/value
The proposed method works well for fuzzy model identification method, a new method of parameter estimation of a Takagi–Sugeno model in the presence of missing features with varying degree of missing data as compared to some well-known methods.
Details
Keywords
Himanshukumar R. Patel and Vipul A. Shah
The purpose of this paper is to stabilize the type-2 Takagi–Sugeno (T–S) fuzzy systems with the sufficient and guaranteed stability conditions. The given conditions efficaciously…
Abstract
Purpose
The purpose of this paper is to stabilize the type-2 Takagi–Sugeno (T–S) fuzzy systems with the sufficient and guaranteed stability conditions. The given conditions efficaciously handle parameter uncertainties by the upper and lower membership functions of the type-2 fuzzy sets (FSs).
Design/methodology/approach
This paper reports on a relevant study of stable fuzzy controllers and type-2 T–S fuzzy systems and reported that the synthesis of controller for nonlinear systems described by the type-2 T–S fuzzy model is a key problem and it can be resolve to convex problems via linear matrix inequalities (LMIs).
Findings
The multigain fuzzy controllers are established to improve the solvability of the stability conditions, and the authors design multigain fuzzy controllers which have extensive information of upper and lower membership grades. Consequently, the authors derive the traditional stability condition in terms of LMIs. One simulation examples illustrate the effectiveness and robustness of the derived stabilization conditions.
Originality/value
The uncertain MIMO nonlinear system described by Type-2 Takagi-Sugeno (T-S) fuzzy model, and successively LMI approach used to determine the system stability conditions. The proposed control approach will give superior fault-tolerant control permanence under the actuator fault [partial loss of effectiveness (LOE)]. Also the controller robust against the unmeasurable process disturbances. Additionally, the statistical z-test are carried out to validate the proposed control approach against the control approach proposed by Himanshukumar and Vipul (2019a).
Details
Keywords
Imen Maalej, Donia Ben Halima Abid and Chokri Rekik
The purpose of this paper is to look at the problem of fault tolerant control (FTC) for discrete time nonlinear system described by Interval Type-2 Takagi–Sugeno (IT2 TS) fuzzy…
Abstract
Purpose
The purpose of this paper is to look at the problem of fault tolerant control (FTC) for discrete time nonlinear system described by Interval Type-2 Takagi–Sugeno (IT2 TS) fuzzy model subjected to stochastic noise and actuator faults.
Design/methodology/approach
An IT2 fuzzy augmented state observer is first developed to estimate simultaneously the system states and the actuator faults since this estimation is required for the design of the FTC control law. Furthermore, based on the information of the states and the faults estimate, an IT2 fuzzy state feedback controller is conceived to compensate for the faults effect and to ensure a good tracking performance between the healthy system and the faulty one. Sufficient conditions for the existence of the IT2 fuzzy controller and the IT2 fuzzy observer are given in terms of linear matrix inequalities which can be solved using a two-step computing procedure.
Findings
The paper opted for simulation results which are applied to the three-tank system. These results are presented to illustrate the effectiveness of the proposed FTC strategy.
Originality/value
In this paper, the problem of active FTC design for noisy and faulty nonlinear system represented by IT2 TS fuzzy model is treated. The developed IT2 fuzzy fault tolerant controller is designed such that it can guarantee the stability of the closed-loop system. Moreover, the proposed controller allows to accommodate for faults, presents a satisfactory state tracking performance and outperforms the traditional type-1 fuzzy fault tolerant controller.
Details
Keywords
Using fuzzy measures and fuzzy integrals, the paper presents a mathematical model of learning which is able to learn through fuzzy information. The characteristics of the model…
Abstract
Using fuzzy measures and fuzzy integrals, the paper presents a mathematical model of learning which is able to learn through fuzzy information. The characteristics of the model are studied theoretically and in numerical examples, where the model is compared with an ordinary Bayesian learning model. The problem of seeking an extremum of multimodel objective function is given as an example.