E. Daniel, R. Saurel, M. Larini and J.C. Loraud
This paper investigates the multi‐phase behaviour of dropletsinjected into a nozzle at two separate wall locations. The physical featuresof the droplets (rate of mass, density and…
Abstract
This paper investigates the multi‐phase behaviour of droplets injected into a nozzle at two separate wall locations. The physical features of the droplets (rate of mass, density and radius) at each injector location are identical. This system can be described by a two‐phase Eulerian—Eulerian approach that yields classical systems of equations: three for the gaseous phase and three for the dispersed droplet phase. An underlying assumption in the two phase model is that no interaction occurs between droplets. The numerical solution of the model (using the MacCormack scheme) indicates however that the opposite jets do interact to form one jet. This inconsistency is overcome in the current paper by associating the droplets from a given injection location with a separate phase and subsequently solving equations describing a multiphase system (here, three‐phase system). Comparison of numerical predications between the two‐phase and the multiphase model shows significantly different results. In particular the multiphase model shows no jet interaction.
Details
Keywords
D. Morvan, B. Porterie, J.C. Loraud and M. Larini
Reports numerical simulations of an unconfined methane‐air turbulent diffusion flame expanding from a porous burner. Turbulent combustion is simulated using the eddy dissipation…
Abstract
Reports numerical simulations of an unconfined methane‐air turbulent diffusion flame expanding from a porous burner. Turbulent combustion is simulated using the eddy dissipation concept (EDC) which supposes that the reaction rate is controlled by the turbulent structures which enhance the mixing of fuel and oxidant. Two statistical k‐ε turbulence models have been tested: a standard high Reynolds number (HRN) and a more recent model based on the renormalization group theory (RNG). Radiation heat transfer and soot formation have been taken into account using P1‐approximation and transport submodels which reproduce the main phenomena encountered during soot production (nucleation, coagulation, surface growth). The set of coupled transport equations is solved numerically using a high order finite‐volume method, the velocity‐pressure coupling is treated by a projection technique. The numerical results confirm that 20‐25 percent of the combustion heat released is radiated away from the flame. Unsteady and unsymmetrical flame behaviour is observed for small Froude numbers which results from the development of Rayleigh‐Taylor like instabilities outside the flame surface. For higher Froude numbers the steady‐state and symmetrical nature of the solution is recovered.
Details
Keywords
Eric Daniel and Jean‐Claude Loraud
A numerical simulation of a two‐phase dilute flow (droplet‐gas mixture) is carried out by using a finite volume method based on Riemann solvers. The computational domain…
Abstract
A numerical simulation of a two‐phase dilute flow (droplet‐gas mixture) is carried out by using a finite volume method based on Riemann solvers. The computational domain represents a one‐ended pipe with holes at its upper wall which lead into an enclosure. The aim of this study is to determine the parameters of such a flow. More specially, an analytical solution is compared with numerical results to assess the mass flow rates through the vents in the pipe. Inertia effects dominate the dynamic behaviour of droplets, which causes a non‐homogeneous flow in the cavity. The unsteady effects are also important, which makes isentropical calculation irrelevant and shows the necessity of the use of CFD tools to predict such flows. No relation can be extracted from the numerical results between the gas and the dispersed mass flow rates across the holes. But a linear variation law for the droplet mass flow versus the position of the holes is pointed out, which is independent of the incoming flow when the evaporating effects are quite low.
Details
Keywords
T. Basset, E. Daniel and J.C. Loraud
Presents validation of the Eulerian approach for unsteady two‐phase flows, whose behaviour depends on the coupling between the two phases, on the basis of the study of…
Abstract
Presents validation of the Eulerian approach for unsteady two‐phase flows, whose behaviour depends on the coupling between the two phases, on the basis of the study of attentuation and dispersion of an acoustic wave propagating into a one dimensional two‐phase flow. This approach and the corresponding numerical aspects are accurate enough for later applications in more complex geometries, where “vortex shedding” phenomena take place. Attenuation and dispersion of a pressure wave in a two‐phase medium of rest was previously studied by Temkin and Dobbins. Present work is an extension of this theory to the case of a two‐phase flow. This theoretical approach leads to a numerical solution of the problem. Compares the derived results with those obtained from a direct numerical simulation based on MacCormack scheme in a finite volume formulation. Verifies that analytical and numerical approaches are in good agreement.
Details
Keywords
J. Vuillon and D. Zeitoun
High‐power chemical lasers operating in high repetitive rate show a decrease of the output energy laser beam. In such lasers, the characteristic time which depends on the laser…
Abstract
High‐power chemical lasers operating in high repetitive rate show a decrease of the output energy laser beam. In such lasers, the characteristic time which depends on the laser output is short in comparison with those related to the flow. Consequently, shock waves, acoustic waves and thermal perturbations, induced by the strong electric energy deposition and remaining in the laser cavity between two pulses, may explain the decrease of output energy of the laser beam. For a better understanding of the flowfields, a numerical approach is carried out using flux corrected transport algorithms (FCT methods) associated with a Riemann solver on the computational domain boundaries. Under two‐dimensional assumptions, the inviscid flow in the convergent‐divergent laser cavity is computed to describe the creation and propagation of the wave system and the hot gas column in both single and multidischarge operating modes. Distortions of the contact surfaces are put into evidence through the study of flowfield instabilities. Finally, the limitations of the two‐dimensional modelization become apparent. The numerical resolution is extended to a 3D case in order to take into account the optical direction. This allows to study the influence of shock waves travelling between optics and being generated by a side effect developing at the electrodes. These waves have an effect of long duration on the flowfield and lead to a high residual perturbation level.
Details
Keywords
Van Luc Nguyen, Tomohiro Degawa and Tomomi Uchiyama
This paper aims to provide discussions of a numerical method for bubbly flows and the interaction between a vortex ring and a bubble plume.
Abstract
Purpose
This paper aims to provide discussions of a numerical method for bubbly flows and the interaction between a vortex ring and a bubble plume.
Design/methodology/approach
Small bubbles are released into quiescent water from a cylinder tip. They rise under the buoyant force, forming a plume. A vortex ring is launched vertically upward into the bubble plume. The interactions between the vortex ring and the bubble plume are numerically simulated using a semi-Lagrangian–Lagrangian approach composed of a vortex-in-cell method for the fluid phase and a Lagrangian description of the gas phase.
Findings
A vortex ring can transport the bubbles surrounding it over a distance significantly depending on the correlative initial position between the bubbles and the core center. The motion of some bubbles is nearly periodic and gradually extinguishes with time. These bubble trajectories are similar to two-dimensional-helix shapes. The vortex is fragmented into multiple regions with high values of Q, the second invariant of velocity gradient tensor, settling at these regional centers. The entrained bubbles excite a growth rate of the vortex ring's azimuthal instability with a formation of the second- and third-harmonic oscillations of modes of 16 and 24, respectively.
Originality/value
A semi-Lagrangian–Lagrangian approach is applied to simulate the interactions between a vortex ring and a bubble plume. The simulations provide the detail features of the interactions.
Details
Keywords
Van Luc Nguyen, Tomohiro Degawa and Tomomi Uchiyama
This study aims to provide discussions of the numerical method and the bubbly flow characteristics of an annular bubble plume.
Abstract
Purpose
This study aims to provide discussions of the numerical method and the bubbly flow characteristics of an annular bubble plume.
Design/methodology/approach
The bubbles, released from the annulus located at the bottom of the domain, rise owing to buoyant force. These released bubbles have diameters of 0.15–0.25 mm and satisfy the bubble flow rate of 4.1 mm3/s. The evolution of the three-dimensional annular bubble plume is numerically simulated using the semi-Lagrangian–Lagrangian (semi-L–L) approach. The approach is composed of a vortex-in-cell method for the liquid phase and a Lagrangian description of the gas phase.
Findings
First, a new phenomenon of fluid dynamics was discovered. The bubbly flow enters a transition state with the meandering motion of the bubble plume after the early stable stage. A vortex structure in the form of vortex rings is formed because of the inhomogeneous bubble distribution and the fluid-surface effects. The vortex structure of the flow deforms as three-dimensionality appears in the flow before the flow fully develops. Second, the superior abilities of the semi-L–L approach to analyze the vortex structure of the flow and supply physical details of bubble dynamics were demonstrated in this investigation.
Originality/value
The semi-L–L approach is applied to the simulation of the gas–liquid two-phase flows.