Search results

1 – 6 of 6
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 3 May 2011

M. Husnawan, H.H. Masjuki and T.M.I. Mahlia

The purpose of this paper is to study the effect of palm olein, amine phosphate and 4‐nonyl phenoxy acetic acid (NPAA) added to a commercial lubricant in terms of tribological…

509

Abstract

Purpose

The purpose of this paper is to study the effect of palm olein, amine phosphate and 4‐nonyl phenoxy acetic acid (NPAA) added to a commercial lubricant in terms of tribological properties such as wear and coefficient of friction.

Design/methodology/approach

A tribological study on the lubrication performance of a lubricant‐based palm oil (PO) containing anti‐wear and antioxidant combined corrosion inhibitor additive was carried out using a universal sliding wear machine. In this experiment, amine phosphate and NPAA were selected as additive to be mixed with PO (palm olein) in several concentrations and commercial lubricant 20W‐50 for the tests. Various PO blended samples with additional 1 and 3 percent additive were used in this study. The experiments were performed under 252 rpm sliding speed for 2 h where the oil temperature reached 100°C.

Findings

The analysis showed that the average wear coefficient and the mean wear scar diameter (MWSD) which is normalized to the 1.4 KPa water pressure generates lower values for the PO containing additives than 100 percent PO, commercial lubricant and their blended. The coefficients of friction and wear were also lower for the samples with additives compared to other. To consolidate the result, viscosity of used samples is checked and shows the additives improved the viscosity stability. Finally, the overall study concluded that PO‐added additives have the potential to be one of the ingredients in effective lubricant oil.

Research limitations/implications

The paper is limited to findings based on a Universal Sliding Machine Test under certain conditions. The test has been conducted on the basis of three types of chemical compounds (palm olein, amine phosphate and NPAA) which are designed as a combination of anti‐wear and antioxidant additive. Wear and friction characteristics of the lubricant with and without these additives are analyzed in this paper. However, the film formation and microstructure analysis of the lubricated materials are excluded in this study.

Practical implications

This paper shows a significant reduction of average wear rate and friction coefficient when palm olein and additive added to the lubricant compared to pure commercial lubricant. In terms of wear scar diameter (WSD), with additional palm olein and additive produces lower WSD which is under the standard limit of diesel lubricity. These results have confirmed that by using palm olein as renewable component together with amine phosphate and NPAA additive would improve lubrication performance as well as improves biodegradability of the lubricant.

Originality/value

This paper emphasises the advantages of synthetic additives that are derived from renewable resources. Since environmental issues are now stringent, many lubricant industries have focused on environmentally friendly lubricant and researches on this particular area become important. The presented tests have been carried out in the above area which is close to those applied in lubricant industry. Thus, the results are reliable and could be very useful both for lubricant designers and the researchers of lubricant and additive formulation.

Details

Industrial Lubrication and Tribology, vol. 63 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 7 August 2017

Sendilvelan S. and Bhaskar K.

Alternative sources for petroleum fuels have been the prime concern of most of the environmentalists. It is also a concern for economists due to the depletable nature of the…

228

Abstract

Purpose

Alternative sources for petroleum fuels have been the prime concern of most of the environmentalists. It is also a concern for economists due to the depletable nature of the fossil fuel. Vegetable oils are considered as good alternatives to diesel as their properties are close to diesel. This work aimed to produce a fuel by adding different proportions of de-oiled neem cake with diesel and to conduct experiments to find out its performance, emission and combustion characteristics.

Design/methodology/approach

At present, biodiesel is commercially produced from the vegetable oils by esterification processes. Because most of these oils are edible, its cost restricts the usage. The de-oiled cakes after crushing the seeds containing around 2 per cent of oil with less fatty materials are aimed in this study.

Findings

The fuel is prepared by adding dry neem de-oiled cake powder at different proportions ranging from 3 to 25 per cent by weight with diesel. Experimental results reveal that the fuel has the potential to reduce smoke, CO emissions simultaneously along with marginal increase in brake thermal efficiency.

Originality/value

In this published research work, the neem oil is used as biodiesel blends with diesel. Here, the authors have used neem de-oiled cake as a replacement for diesel.

Details

World Journal of Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 17 August 2020

Rui Liu, Wanzhong Zhao, Zhenyu Wang and Xiaqing Liu

This study aims to contrastively investigate the effects of biodiesel and diesel on the power, economy and combustion characteristics of a compression ignition aviation piston…

224

Abstract

Purpose

This study aims to contrastively investigate the effects of biodiesel and diesel on the power, economy and combustion characteristics of a compression ignition aviation piston engine for unmanned aerial vehicles.

Design/methodology/approach

Biodiesel used as alternative fuel will not be mixed with diesel during experimental study. Pure diesel fuel is used for the comparative test. Same fuel injection strategies, including pilot and main injection, are guaranteed for two fuels in same test points.

Findings

The engine-rated power of biodiesel is lower than diesel, which results in higher specific fuel combustion (SFC) and effective thermal efficiency (ETE). Biodiesel has the faster burning rate, shorter combustion duration. The crank angle of 50% mass fraction burned (CA50) is earlier than diesel. The ignition delay angle of biodiesel and diesel in the pilot injection stage is almost the same at high engine speed. As the speed and load decrease, the ignition delay angle of biodiesel in the pilot injection stage is smaller than diesel. At 100% high load conditions, the fuel-burning fraction of biodiesel in the pilot injection is the same as diesel. The peak heat release rate (HRR) of biodiesel is slightly lower than diesel. At 20% part load conditions, the fuel-burning fraction of biodiesel in the pilot injection stage is lower than diesel. Because of the combustion participation of unburned pilot injected fuel, the peak HRR of biodiesel in the main injection is equal to or even higher than diesel.

Originality/value

The application feasibility of alternative fuel and its effects on aviation engine power, economy and combustion characteristics will be evaluated according to the “drop-in“ requirements and on the low-cost premise without changing the aviation engine structure and parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 8 May 2017

Shing Chuan Lee, Noreffendy Tamaldin and Mohd Fadzli Bin Abdollah

This paper aims to investigate the tribological performance of the decanter cake feedstock biodiesel which was blended in 5 and 10 per cent volume with petroleum diesel.

308

Abstract

Purpose

This paper aims to investigate the tribological performance of the decanter cake feedstock biodiesel which was blended in 5 and 10 per cent volume with petroleum diesel.

Design/methodology/approach

The tribological performance of the decanter cake biodiesel was tested using the modified ASTM D4172 standard with temperature range from 300°C to 750°C and load range from 392 to 981 N while spindle speed is at 1,200 rpm.

Findings

At 5 per cent volume of biodiesel, friction reduced ranging from 10 to 45 per cent at all temperature and load ranges, whereas specific wear rate reduced ranging from 22 to 29 per cent at low load and 4 per cent to 15 per cent at high load for all temperature ranges. Addition up to 10 per cent volume of biodiesel reduced friction ranging from 10 to 35 per cent at all temperature and load ranges, whereas specific wear rate reduced ranging from 15 to 29 per cent only at low load for all temperature ranges.

Practical implications

The standardised test may not represent the actual condition of a real running diesel engine.

Originality/value

Because the lubricity of biodiesel was difficult to determine in a real running engine, this paper provided a standardised test for simplification.

Details

Industrial Lubrication and Tribology, vol. 69 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 9 March 2015

Carlos Alberto Schuch Bork, Janaina Fracaro Souza Gonçalves and Jefferson Oliveira Gomes

This article aims to collect data on the aluminum alloy 7050-T7451 machinability used in the manufacturing of aeronautical structures, using the combination of the jatropha…

394

Abstract

Purpose

This article aims to collect data on the aluminum alloy 7050-T7451 machinability used in the manufacturing of aeronautical structures, using the combination of the jatropha vegetable-base soluble cutting oil in relation to the canola vegetal and semisynthetic mineral oils and the technique to apply cutting fluid by flood in relation to the Minimum Quantity Lubrication (MQL) in the milling process (HSM – high-speed machining).

Design/methodology/approach

It was observed that the jatropha vegetal cutting oil presented the best results in relation to requirements for lubrication, superficial mean roughness (index Ra) and shape errors in relation to the other oils in both the techniques to apply fluid which were tested. Comparing the application techniques, the jatropha vegetal oil offered an increase in the life span of the cutting tool, using the flood technique, exceeding in almost six times the machined length of the cutting tool in relation to the MQL technique in the same process conditions.

Findings

The Jatropha vegetable-base cutting oil, besides being produced from a renewable source, has inherent characteristics that can help attain a sustainable manufacturing, mainly with the use of the flood technique to apply cutting fluid in the aluminum alloy 7050-T7451 machining.

Originality/value

The Jatropha (vegetable) oil, in relation to its physicochemical properties, appeared to be the best one fit for being used in the machining of aluminum alloys 7050-T7451 because it did not interfere with any of the elements involved in the formation of intergranular corrosion and/or pitting, which are not allowed in the aeronautical production of parts. Jatropha (vegetable) cutting oil, besides being produced from a clean and renewable source, has the inherent characteristics that can help attain a sustainable manufacturing.

Details

Industrial Lubrication and Tribology, vol. 67 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 8 May 2017

Abdul Munir Hidayat Syah Lubis, Bambang Ariwahjoedi and Mustafar Sudin

This study aims to characterize the composition of the tribo-layer formed during sliding of steel in the presence of crude jatropha oil (CJO) and epoxidized jatropha oil (EJO…

166

Abstract

Purpose

This study aims to characterize the composition of the tribo-layer formed during sliding of steel in the presence of crude jatropha oil (CJO) and epoxidized jatropha oil (EJO) under boundary lubricant application.

Design/methodology/approach

CJO was obtained from a local market and used as received. EJO was obtained by epoxidation process with peroxyformic acid catalyzed by acidic ion exchange resin. The tribological test was conducted by the four ball method according to ASTM 4192. Wear scars generated on the lower balls were used to characterize the tribo-layer. Energy-dispersive X-ray and X-ray photo spectroscopy analysis were conducted to characterize the tribo-layer composition.

Findings

EJO shows a lower friction coefficient compared to CJO. Moreover, EJO also shows better wear preventive properties compared to CJO. The oxidation of CJO and EJO has lead chemisorption of the oil to steel surface to cause formation of protective layers for the steel surface. The layers were constructed from inorganic oxide in the form of iron oxides and silicon oxide together with organic layers in form of aldehyde, ketone and carboxylic acid. The formation and removal of this layer from rubbing sites are considered to affect wear-preventive and friction behaviour of steel lubricated with CJO and EJO.

Originality/value

This works highlights friction and anti-wear characteristics of CJO and EJO. This work also presents the composition of the tribo-layer that formed because of the sliding of steel lubricated with CJO and EJO. The method and result can be used for further investigation and development of lubricant.

Details

Industrial Lubrication and Tribology, vol. 69 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 6 of 6
Per page
102050