Search results

1 – 10 of 779
Article
Publication date: 2 August 2024

Sweta, RamReddy Chetteti and Pranitha Janapatla

This study aims to optimize heat transfer efficiency and minimize friction factor and entropy generation in hybrid nanofluid flows through porous media. By incorporating factors…

Abstract

Purpose

This study aims to optimize heat transfer efficiency and minimize friction factor and entropy generation in hybrid nanofluid flows through porous media. By incorporating factors such as melting effect, buoyancy, viscous dissipation and no-slip velocity on a stretchable surface, the aim is to enhance overall performance. Additionally, sensitivity analysis using response surface methodology is used to evaluate the influence of key parameters on response functions.

Design/methodology/approach

After deriving suitable Lie-group transformations, the modeled equations are solved numerically using the “spectral local linearization method.” This approach is validated through rigorous numerical comparisons and error estimations, demonstrating strong alignment with prior studies.

Findings

The findings reveal that higher Darcy numbers and melting parameters are associated with decreased entropy (35.86% and 35.93%, respectively) and shear stress, increased heat transmission (16.4% and 30.41%, respectively) in hybrid nanofluids. Moreover, response surface methodology uses key factors, concerning the Nusselt number and shear stress as response variables in a quadratic model. Notably, the model exhibits exceptional accuracy with $R^2$ values of 99.99% for the Nusselt number and 100.00% for skin friction. Additionally, optimization results demonstrate a notable sensitivity to the key parameters.

Research limitations/implications

Lubrication is a vital method to minimize friction and wear in the automobile sector, contributing significantly to energy efficiency, environmental conservation and carbon reduction. The incorporation of nickel and manganese zinc ferrites into SAE 20 W-40 motor oil lubricants, as defined by the Society of Automotive Engineers, significantly improves their performance, particularly in terms of tribological attributes.

Originality/value

This work stands out for its focus on applications such as hybrid electromagnetic fuel cells and nano-magnetic material processing. While these applications are gaining interest, there is still a research gap regarding the effects of melting on heat transfer in a NiZnFe_2O_4-MnZnFe_2O_4/20W40 motor oil hybrid nanofluid over a stretchable surface, necessitating a thorough investigation that includes both numerical simulations and statistical analysis.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 March 2024

U.S. Mahabaleshwar, Mahesh Rudraiah, Huang Huang and Bengt Ake Sunden

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is…

Abstract

Purpose

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is expanding and contracting while applying mass transpiration and velocity slip conditions to the flow. The nanofluid, which is composed of Au, Ag and Cu nanoparticles dispersed in water as the base fluid, possesses critical properties for increasing the heat transfer rate and is frequently used in manufacturing and industrial establishments.

Design/methodology/approach

The set of governing nonlinear partial differential equations is transformed into a set of nonlinear ordinary differential equations. The outcome of this differential equation is solved and obtained the closed-form solution and energy equation in the form of hypergeometric functions.

Findings

The velocity, micro-rotation and temperature field are investigated versus a parametric variation. The physical domains of mass suction or injection and micropolar characteristics play an important role in specifying the presence, singleness and multiplanes of exact solutions. In addition, many nondimensional characteristics of the profiles of temperature, angular velocity and velocity profiles are graphically shown with substantial consequences. Furthermore, adding nanoparticles increases the heat transfer rate of the fluid used in manufacturing and industrial establishments. The current findings may be used for better oil recovery procedures, smart materials such as magnetorheological fluids, targeted medicine administration and increased heat transmission. Concerning environmental cleanup, nanomaterial fabrication and biomedical devices, demonstrate their potential influence in a variety of disciplines.

Originality/value

The originality of this paper is to analyze the impact of inclined MHD at an angle with the ternary nanofluid on a micropolar fluid over an expanding and contracting sheet with thermal radiation effect.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 January 2021

Naeem Ullah, Sohail Nadeem, Luthais McCash, Anber Saleem and Alibek Issakhov

This paper aims to focus on the natural convective flow analysis of micropolar nanofluid fluid in a rectangular vertical container. A heated source is placed in the lower wall to…

Abstract

Purpose

This paper aims to focus on the natural convective flow analysis of micropolar nanofluid fluid in a rectangular vertical container. A heated source is placed in the lower wall to generate the internal flow. In further assumptions, the left/right wall are kept cool, while the upper and lower remaining portions are insulated. Free convection prevails in the regime because of thermal difference in-between the lower warmer and upper colder region.

Design/methodology/approach

The physical setup owns mathematical framework in-terms of non-linear partial differential equations. For the solution purpose of the differential system, finite volume method is adopted. The interesting features of the flow along with thermal transportation involve both translational and rotational movement of fluid particles.

Findings

Performing the simulations towards flow controlling variables the outputs are put together in contour maps and line graphs. It is indicated that the variations in flow profile mass concentration and temperature field augments at higher Rayleigh parameter because of stronger buoyancy effects. Higher viscosity coefficient implies decrease in flow and thermal transportation. Further, the average heat transfer rate also grows by increasing both the Rayleigh parameter and heated source length.

Originality/value

To the best of the authors’ knowledge, no such study has been addressed yet. Further, the results are validated by comparing with previously published work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 December 2020

Thameem Basha Hayath, Sivaraj Ramachandran, Ramachandra Prasad Vallampati and O. Anwar Bég

Generally, in computational thermofluid dynamics, the thermophysical properties of fluids (e.g. viscosity and thermal conductivity) are considered as constant. However, in many…

Abstract

Purpose

Generally, in computational thermofluid dynamics, the thermophysical properties of fluids (e.g. viscosity and thermal conductivity) are considered as constant. However, in many applications, the variability of these properties plays a significant role in modifying transport characteristics while the temperature difference in the boundary layer is notable. These include drag reduction in heavy oil transport systems, petroleum purification and coating manufacturing. The purpose of this study is to develop, a comprehensive mathematical model, motivated by the last of these applications, to explore the impact of variable viscosity and variable thermal conductivity characteristics in magnetohydrodynamic non-Newtonian nanofluid enrobing boundary layer flow over a horizontal circular cylinder in the presence of cross-diffusion (Soret and Dufour effects) and appreciable thermal radiative heat transfer under a static radial magnetic field.

Design/methodology/approach

The Williamson pseudoplastic model is deployed for rheology of the nanofluid. Buongiorno’s two-component model is used for nanoscale effects. The dimensionless nonlinear partial differential equations have been solved by using an implicit finite difference Keller box scheme. Extensive validation with earlier studies in the absence of nanoscale and variable property effects is included.

Findings

The influence of notable parameters such as Weissenberg number, variable viscosity, variable thermal conductivity, Soret and Dufour numbers on heat, mass and momentum characteristics are scrutinized and visualized via graphs and tables.

Research limitations/implications

Buongiorno (two-phase) nanofluid model is used to express the momentum, energy and concentration equations with the following assumptions. The laminar, steady, incompressible, free convective flow of Williamson nanofluid is considered. The body force is implemented in the momentum equation. The induced magnetic field strength is smaller than the external magnetic field and hence it is neglected. The Soret and Dufour effects are taken into consideration.

Practical implications

The variable viscosity and thermal conductivity are considered to investigate the fluid characteristic of Williamson nanofluid because of viscosity and thermal conductivity have a prime role in many industries such as petroleum refinement, food and beverages, petrochemical, coating manufacturing, power and environment.

Social implications

This fluid model displays exact rheological characteristics of bio-fluids and industrial fluids, for instance, blood, polymer melts/solutions, nail polish, paint, ketchup and whipped cream.

Originality/value

The outcomes disclose that the Williamson nanofluid velocity declines by enhancing the Lorentz hydromagnetic force in the radial direction. Thermal and nanoparticle concentration boundary layer thickness is enhanced with greater streamwise coordinate values. An increase in Dufour number or a decrease in Soret number slightly enhances the nanofluid temperature and thickens the thermal boundary layer. Flow deceleration is induced with greater viscosity parameter. Nanofluid temperature is elevated with greater Weissenberg number and thermophoresis nanoscale parameter.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 November 2018

Jayarami Reddy Konda, Madhusudhana Reddy N.P., Ramakrishna Konijeti and Abhishek Dasore

The purpose of this paper is to examine the influence of magnetic field on Williamson nanofluid embedded in a porous medium in the presence of non-uniform heat source/sink…

Abstract

Purpose

The purpose of this paper is to examine the influence of magnetic field on Williamson nanofluid embedded in a porous medium in the presence of non-uniform heat source/sink, chemical reaction and thermal radiation effects.

Design/methodology/approach

The governing physical problem is presented using the traditional Navier–Stokes theory. Consequential system of equations is transformed into a set of non-linear ordinary differential equations by means of scaling group of transformation, which are solved using the Runge–Kutta–Fehlberg method.

Findings

The working fluid is examined for several sundry parameters graphically and in a tabular form. It is noticed that with an increase in Eckert number, there is an increase in velocity and temperature along with a decrease in shear stress and heat transfer rate.

Originality/value

A good agreement of the present results has been observed by comparing with the existing literature results.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 October 2023

MD. Shamshuddin, Anwar Saeed, S.R. Mishra, Ramesh Katta and Mohamed R. Eid

Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs…

Abstract

Purpose

Whilst a modest number of investigations have been undertaken concerning nanofluids (NFs), the exploration of fluid flow under exponentially stretching velocities using NFs remains comparatively uncharted territory. This work presents a distinctive contribution through the comprehensive examination of heat and mass transfer phenomena in the NF ND–Cu/H2O under the influence of an exponentially stretching velocity. Moreover, the investigation delves into the intriguing interplay of gyrotactic microorganisms and convective boundary conditions within the system.

Design/methodology/approach

Similarity transformations have been used on PDEs to convert them into dimensionless ODEs. The solution is derived by using the homotopy analysis method (HAM). The pictorial notations have been prepared for sundry flow parameters. Furthermore, some engineering quantities are calculated in terms of the density of motile microbes, Nusselt and Sherwood numbers and skin friction, which are presented in tabular form.

Findings

The mixed convection effect associated with the combined effect of the buoyancy ratio, bioconvection Rayleigh constant and the resistivity due to the magnetization property gives rise to attenuating the velocity distribution significantly in the case of hybrid nanoliquid. The parameters involved in the profile of motile microorganisms attenuate the profile significantly.

Practical implications

The current simulations have uncovered fascinating discoveries about how metallic NFs behave near a stretched surface. These insights give us valuable information about the characteristics of the boundary layer close to the surface under exponential stretching.

Originality/value

The novelty of the current investigation is the analysis of NF ND–Cu/H2O along with an exponentially stretching velocity in a system with gyrotactic microorganisms. The investigation of fluid flow at an exponentially stretching velocity using NFs is still relatively unexplored.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2021

Sumit Gupta, Sandeep Gupta, Nawal Kishor Jangid, Vijay kumar Singhal, Rohit Mukherjee and Sangeeta Choudhary

The purpose of the current article is to explore the rotational behavior on nanofluid flow over an exponentially stretching surface. Heat and mass flux are formulated upon…

Abstract

Purpose

The purpose of the current article is to explore the rotational behavior on nanofluid flow over an exponentially stretching surface. Heat and mass flux are formulated upon Cattaneo–Christov theory.

Design/methodology/approach

Effect of thermophoretic, Brownian motion and thermally convective conditions is further retained. Novel boundary layer approximations are applied to transform the governing equations of continuity, momentum, energy and nanoparticle volume fraction. Convergent series solutions are obtained to manage the rotating flow with the aid of homotopy analysis method (HAM).

Findings

Depending on the several dimensionless parameters including the local rotation parameter the Prandtl number Pr, the thermophoresis parameter, the Brownian motion parameter, the Lewis number Le, Biot number Bi, Deborah number in terms of heat flux relaxation parameter and Deborah number in terms of mass flux relaxation parameter with the dimensionless physical quantities are deliberated through graphs. Present results are also likened with the foregoing results in significance.

Originality/value

No such assumptions have been made for the development of analytical solution so far.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 January 2017

Mythili Durairaj, Sivaraj Ramachandran and Rashidi Mohammad Mehdi

The present investigation aims to deal with the study of unsteady, heat-generating/-absorbing and chemically reacting Casson fluid flow over a vertical cone and flat plate…

Abstract

Purpose

The present investigation aims to deal with the study of unsteady, heat-generating/-absorbing and chemically reacting Casson fluid flow over a vertical cone and flat plate saturated with non-Darcy porous medium in the presence of cross-diffusion effects.

Design/methodology/approach

A numerical computation for the governing equations has been performed using implicit finite difference method of Crank–Nicolson type.

Findings

The influence of various physical parameters on velocity, temperature and concentration distributions is illustrated graphically, and the physical aspects are discussed in detail. Numerical results for average skin-friction, Nusselt number and Sherwood number are tabulated for the pertaining physical parameters. Results indicate that Soret and Dufour effects have notable influence on heat and mass transfer characteristics of the fluid when the temperature and concentration gradients are high. It is also observed that the consideration of heat generation/absorption plays a vital role in predicting the heat transfer characteristics of moving fluids.

Research limitations/implications

Consider a two-dimensional, unsteady, free convective flow of an incompressible Casson fluid over a vertical cone and a flat plate saturated with non-Darcy porous medium. The fluid properties are assumed to be constant except for density variations in the buoyancy force term. The fluid flow is moderate and the permeability of the medium is assumed to be low, so that the Forchheimer flow model is applicable.

Practical implications

The flow of Casson fluids (such as drilling muds, clay coatings and other suspensions, certain oils and greases, polymer melts and many emulsions), in the presence of heat transfer, is an important research area because of its relevance in the optimized processing of chocolate, toffee and other foodstuffs.

Social implications

In the heat and mass transfer investigations, the Casson fluid model is found to be accurately applicable in many practical situations in the wings of polymer processing industries and biomechanics, etc.; some prominent examples are silicon suspensions, suspensions of bentonite in water and lithographic varnishes used for printing inks.

Originality/value

The motivation of the present study is to bring out the effects of heat source/sink, Soret and Dufour effects on chemically reacting Casson fluid flow over a vertical cone and flat plate saturated with non-Darcy porous medium. The flow of Casson fluids (such as certain oils and greases, polymer melts and many emulsions) in the presence of heat transfer is an important research area because of its relevance in the optimized processing of chocolate, toffee and other foodstuffs. A numerical computation for the governing equations has been performed using implicit finite difference method of the Crank–Nicolson type.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 February 2022

Umair Khan, Aurang Zaib, Ioan Pop, Iskandar Waini and Anuar Ishak

Nanofluid research has piqued the interest of scientists due to its intriguing applications in nanoscience, biomedical and electrical engineering, medication delivery…

Abstract

Purpose

Nanofluid research has piqued the interest of scientists due to its intriguing applications in nanoscience, biomedical and electrical engineering, medication delivery, biotechnology, food processing, chemotherapy and other fields. This paper aims to inspect the behavior of the mixed convection magnetohydrodynamic flow and heat transfer induced by a nonlinear stretching/shrinking sheet in a nanofluid with a convective boundary condition. Tiwari and Das mathematical nanofluid model is incorporated in the analysis.

Design/methodology/approach

The mathematical model is initially transformed to a nondimensional form by using dimensionless variables. Then the nondimensional partial differential equations are further transformed to a set of similarity equations by using the similarity technique. These equations are solved numerically by the bvp4c function in MATLAB software.

Findings

For a certain range of the stretching/shrinking parameter, two solutions are obtained. The friction factor and the heat transfer rate escalate due to suction parameter with adding nanoparticles volume fraction by almost 27.15% and 0.153% for the upper branch solution, while the friction factor declines by almost 30.10% but the heat transfer rate augments by 0.145% for the lower branch solution. Furthermore, the behavior of the nanoparticle volume fractions on the heat transfer rate behaves differently in the presence of the mixed convection effect. The temperature of fluid augments with increasing Biot number for both solutions.

Originality/value

The present work considers the flow and heat transfer induced by a stretching/shrinking sheet in a nanofluid using the Tiwari–Das nanofluid model with a convective boundary condition, where the effect of the buoyancy force is taken into consideration. It is shown that two solutions are found for a certain range of the shrinking strength, while the solution is unique for the stretching case. This study is important for scientists working in the growing field of nanofluids to become familiar with the flow properties and behaviors of such nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 December 2024

Ahmed M. Galal, Muhammad Zeemam, Muhammad Imran, Muhammad Abdul Basit, Madeeha Tahir, Saima Akram and Jihad Younis

Nanofluids are used in technology, engineering processes and thermal exchanges. In thermal transfer processing, these are used for the smooth transportation of heat and mass…

Abstract

Purpose

Nanofluids are used in technology, engineering processes and thermal exchanges. In thermal transfer processing, these are used for the smooth transportation of heat and mass through various mechanisms. In the current investigation, we have examined multiple effects like activation energy thermal radiation, magnetic field, external heat source and especially slippery effects on a bioconvective Casson nanofluid flow through a stretching cylinder.

Design/methodology/approach

Several studies used non-Newtonian fluid models to study blood flow in the cardiovascular system. In our research, Lewis numbers for bioconvection and the influence of important parameters, such as Brownian diffusion and thermophoresis effects, are also considered. This system is developed as a partial differential equation for the mathematical treatment. Well-defined similarity transformations convert partial differential equation systems into ordinary differential equations. The resultant system is then numerically solved using the bvp4c built-in function of MATLAB.

Findings

After utilizing the numerical approach to the system of ordinary differential equations (ODEs), the results are generated in the form of graphs and tables. These generated results show a suitable accuracy rate compared to the previous results. The consequence of various parameters under the assumed boundary conditions on the temperature, motile microorganisms, concentration and velocity profiles are discussed in detail. The velocity profile decreases as the Magnetic and Reynolds number increases. The temperature profile exhibits increasing behavior for the Brownian motion and thermal radiation count augmentation. The concentration profile decreased on greater inputs of the Schmidt number and magnetic effect. The density of motile microorganisms decreases for the increased value of the bio-convective Lewis number.

Originality/value

The numerical analysis of the flow problem is addressed using graphical results and tabular data; our reported results are refined and novel based on available literature. This method is useful for addressing such fluidic flow efficiently.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 779