Search results

1 – 10 of 19
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 13 September 2011

Fatima Bensajjay, Saliha Alehyen, Mohammed El Achouri, Najat Hajjaji, Abdelkbir Bellaouchou, Lourdes Perez and Maria Rosa Infante

The purpose of this investigation is the evaluation of the inhibitive performance of a new “gemini” surfactant in the series of bis‐quat: N, N, N′, N″, N″‐pentamethyl…

482

Abstract

Purpose

The purpose of this investigation is the evaluation of the inhibitive performance of a new “gemini” surfactant in the series of bis‐quat: N, N, N′, N″, N″‐pentamethyl diethyleneamine‐N, N″‐di‐[tetradecylammonium bromide] on the corrosion of iron in 1 M HCl by gravimetric, potentiodynamic and electrochemical impedance measurements. The effect of the temperature on the corrosion behavior of iron in 1 M HCl without and with inhibitor is studied in the temperature range (298‐333 K). This work also attempts to correlate thermodynamic and kinetic parameters with the inhibition effect.

Design/methodology/approach

The inhibition efficiency of gemini synthesized is investigated by weight loss, potentiodynamic polarization and impedance spectroscopy methods.

Findings

The synthesized gemini bis‐quat acted as a good inhibitor in 1 M HCl, and inhibition efficiency increased with inhibitor concentration and temperature. Polarization curves showed that the surfactant was a mixed‐type inhibitor in hydrochloric acid. Impedance spectroscopy measurements showed that the inhibitor acted through the formation of a multilayer film at the iron surface. The adsorption of inhibitor on the iron surface obeyed the Langmuir adsorption isotherm equation. The inhibition effect was satisfactorily explained by both thermodynamic and kinetic parameters.

Originality/value

The adsorption of surfactants in the metal surface can markedly change the corrosion resisting property of the metal. So the study of the relation between the adsorption and corrosion inhibition is of a great importance. This was the first attempt to study the inhibition properties of gemini surfactants at the host laboratory.

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 1 December 2003

F. Bensajjay, S. Alehyen, M. El Achouri and S. Kertit

1‐phenyl 5‐mercarpto 1,2,3,4‐tetrazole (PMT) was tested as an inhibitor for the corrosion of steel in 0.5 M H2SO4 and 1/3 M H3PO4 by weight‐loss and electrochemical methods…

563

Abstract

1‐phenyl 5‐mercarpto 1,2,3,4‐tetrazole (PMT) was tested as an inhibitor for the corrosion of steel in 0.5 M H2SO4 and 1/3 M H3PO4 by weight‐loss and electrochemical methods. Results obtained showed that the inhibition efficiency of PMT increased with the increase of inhibitor concentration and reached an optimum value (98 per cent) at 10−3 M in H2SO4 and H3PO4 solutions. The effect of the temperature on the kinetic parameters of corrosion of steel in the aqueous solutions of H2SO4 and H3PO4 with and without addition of PMT has been studied and the associated parameters were determined.

Details

Anti-Corrosion Methods and Materials, vol. 50 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 1 December 2005

H.S. Awad and S. Abdel Gawad

To investigate the capability of a series of nitrogen‐based heterocyclic organic compounds in inhibiting corrosion of iron in HCl and elucidate the dominant active form of the…

920

Abstract

Purpose

To investigate the capability of a series of nitrogen‐based heterocyclic organic compounds in inhibiting corrosion of iron in HCl and elucidate the dominant active form of the applied compounds during the adsorption process to explore the mechanism of their action.

Design/methodology/approach

The tested compounds were pyrimidine containing compounds, which were selected, based on molecular structure considerations. Gravimetric method has been applied with various electrochemical techniques (polarisation resistance, polarisation curves and electrochemical impedance spectroscopy) to investigate inhibition efficiency and mechanism.

Findings

The inhibiting action of the investigated pyrimidine containing compounds depends primarily on their concentration and molecular structure. These compounds act as mixed type inhibitors and function via adsorption on the surface, which follows Frumkin adsorption isotherm. The inhibition by the tested pyrimidine derivatives could be attributed to their chemisorption on the metal surface forming donor/acceptor type of bond between the inhibitor molecules and the vacant d orbitals of the surface iron atoms. Contribution from electrostatic adsorption, via interaction between the protonated form of the inhibitor and the charged metal surface, is also possible.

Research limitations/implications

The applied inhibitors were tested in the presence of chloride ions as a corrosive medium. Whether these inhibitors will function well in the presence of other ions that are typically present in natural corrosive environment is unknown.

Originality/value

This paper provides useful information regarding inhibition effect of pyrimidine and series of its derivatives. The outcome of this work contributes to better understanding of the mechanism of inhibition by this class of N‐based heterocyclic organic compounds.

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 12 September 2008

R.F. Al‐Ghamdi, A.M. El‐Shareef, M.T. Saeed and S.A. Ali

The aim is to demonstrate corrosion inhibition capabilities of several isoxazolidines, containing hydrophobic substituents and having varying degree of steric congestion around…

479

Abstract

Purpose

The aim is to demonstrate corrosion inhibition capabilities of several isoxazolidines, containing hydrophobic substituents and having varying degree of steric congestion around nitrogen.

Design/methodology/approach

A number of isoxazolidines were prepared. Corrosion inhibition efficiencies of these organic compounds were determined by gravimetric and electrochemical methods, using carbon steel as the substrate metal and 0.5 M H2SO4 at 40‐70°C as the corrosive environment. Concentration of inhibitor was varied between 5 and 400 ppm.

Findings

Increase in steric congestion around the nitrogen centre and hydrophobic chain lengths as well as increase in temperature (in the presence of the inhibitor in the higher concentration range 100‐400 ppm) were found to increase the corrosion inhibition efficiency of the isoxazolidines. Electrochemical measurements corroborated these results. Thermodynamic parameters (ΔGads0Hads0Sads0) for the adsorption process and kinetic parameters for the metal dissolution (or hydrogen evolution) reaction were determined.

Originality/value

This is the first time the corrosion inhibition characteristics of isoxazolidines, an important class of readily accessible compounds, have been evaluated in H2SO4 medium.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 12 February 2018

Younes El Kacimi, Mouhsine Galai, Khaoula Alaoui, Rachid Touir and Mohamed Ebn Touhami

The purpose of this paper is to study the effect of silicon and phosphorus content in steel suitable for galvanizing on its corrosion and inhibitor adsorption processes in…

123

Abstract

Purpose

The purpose of this paper is to study the effect of silicon and phosphorus content in steel suitable for galvanizing on its corrosion and inhibitor adsorption processes in steels/cetyltrimethylammonium bromide combined and KI (mixture)/5.0 M hydrochloric acid systems has been studied in relation to the temperature using chemical (weight loss), Tafel polarization, electrochemical impedance spectroscopy (EIS), scanning electronic microscope (SEM) analysis and Optical 3D profilometry characterization. All the methods used are in reasonable agreement. The kinetic and thermodynamic parameters for each steels corrosion and inhibitor adsorption, respectively, were determined and discussed. Results show that the adsorption capacity for Steel Classes A and B are better than Steel Class C surfaces depending on their silicon and phosphorus content. Surface analyses via SEM and Optical 3D profilometry was used to investigate the morphology of the steels before and after immersion in 5.0 M HCl solution containing mixture. Surface analysis revealed improvement of corrosion resistance of Steels Classes A and B in the presence of mixture more than Classes C. It has been determined that the adsorbed protective film on the steels surface heterogeneity markedly depends on steels compositions, that is, the heterogeneity increases with decreasing silicon and phosphorus content.

Design/methodology/approach

The effect of silicon and phosphorus content in Steels Classes A, B and C on its corrosion and inhibitor mixture adsorption processes in 5.0 M HCl solution has been studied by weight loss, potentiodynamic polarization, EIS and surface analysis.

Findings

The inhibition efficiency of mixture follows the order: (Steel Class A) > (Steel Class B) > Steel Class C) and depends on their compositions in the absence of mixture according on their silicon and phosphorus content, that is, the corrosion rate increases with increasing of the silicon and phosphorus content. A potentiodynamic polarization measurement indicates that the mixture acts as mixed-type inhibitor without changing the mechanism of corrosion process for the three classes of mild steels.

Originality/value

Corrosion rate mild steels in 5.0 M HCl depends on their compositions in the absence of mixture according to their silicon and phosphorus content, that is, the corrosion rate increases with increasing silicon and phosphorus content. The adsorbed protective film on the steels surface heterogeneity markedly depends on steels class’s compositions, that is, the heterogeneity increases with decreasing silicon and phosphorus content.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 7 November 2016

Paulo Renato de Souza, Jean Vicente Ferrari and Isabel Correia Guedes

Surfactants have been reported to have high inhibition efficiencies for corrosion of steel. This paper aims to study the performance of a low toxic copolymer of…

323

Abstract

Purpose

Surfactants have been reported to have high inhibition efficiencies for corrosion of steel. This paper aims to study the performance of a low toxic copolymer of polydimethylsiloxane and polyoxyalkylene (POA) surfactant named as POPS, as a corrosion inhibitor for mild steel (ASTM 1005) in hydrochloric acid (HCl) solution at 25°C.

Design/methodology/approach

To evaluate POPS efficiency as a corrosion inhibitor, the following techniques were used: surface tension measurements, weight loss measurements, open circuit potential monitoring, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy and contact angle measurements.

Findings

Results indicated that POPS acted as a mixed corrosion inhibitor and led to a hydrophobic protector film on the metal surface. The adsorption process obeyed the Langmuir adsorption isotherm by chemisorption. The maximum efficiency of the surfactant studied was achieved in a concentration around the critical micelle concentration.

Originality/value

Surfactant (POPS) of low level of toxicity acts as a mixed corrosion inhibitor in HCl medium. Inhibitor film formation was characterized by EIS results. A mechanism for corrosion inhibition is proposed.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 1 June 2003

S. Tamilselvi and S. Rajeswari

The inhibitive action of triazoles and surfactants on the corrosion of carbon steel has been studied using the weight loss method and electrochemical studies. Results obtained…

683

Abstract

The inhibitive action of triazoles and surfactants on the corrosion of carbon steel has been studied using the weight loss method and electrochemical studies. Results obtained show that these organic compounds are very good inhibitors. Potentiodynamic polarisation studies clearly reveal the type of inhibitor. The corrosion parameters such as corrosion current (icorr), corrosion potential (Ecorr), inhibition efficiency (IE), corrosion rate, and activation energy (Ea) were calculated at different temperatures ranging from 303 to 333 K. The adsorption of triazole compounds on carbon steel surface obeyed Langmuir's adsorption isotherm.

Details

Anti-Corrosion Methods and Materials, vol. 50 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 2 September 2019

Aziz Boutouil, My Rachid Laamari, Ilham Elazhary, Hafid Anane, Abdeslem Ben Tama and Salah-Eddine Stiriba

This study aims to investigate the inhibition effect of a newly synthesized1,2,3-triazole containing a carbohydrate and imidazole substituents, namely…

113

Abstract

Purpose

This study aims to investigate the inhibition effect of a newly synthesized1,2,3-triazole containing a carbohydrate and imidazole substituents, namely, 1-((1-((2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4′,5′-d]pyran-5-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-benzo[d]imidazole (TTB) on the corrosion of mild steel in aerated 1 M H2SO4.

Design/methodology/approach

The authors have used weight loss measurement, potentiodynamic polarization, electrochemical impedance spectroscopy, FT-IR studies, scanning electron microscopy analysis and energy dispersive X-ray (EDX) spectroscopy techniques.

Findings

It is found that, in the working range of 298-328 K, the inhibition efficiency of TTB increases with increasing concentration to attain the highest value (92 per cent) at 2.5 × 10−3 M. Both chemisorption and physisorption of TTB take place on the mild steel, resulting in the formation of an inhibiting film. Computational methods point to the imidazole and phenyl ring as the main structural parts responsible of adsorption by electron-donating to the steel surface, while the triazol ring is responsible for the electron accepting. Such strong donating–accepting interactions lead to higher inhibition efficiency of TTB in the aqueous working system.

Originality/value

This work is original with the aim of finding new acid corrosion inhibitors.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 3 November 2014

P.C. Okafor and E.A. Apebende

This paper aims to evaluate the inhibitive action of the corrosion of mild steel in sulphuric acid solutions by ethanol extracts of Thymus vulgaris (TYV), Xylopia aethiopica (XYA…

182

Abstract

Purpose

This paper aims to evaluate the inhibitive action of the corrosion of mild steel in sulphuric acid solutions by ethanol extracts of Thymus vulgaris (TYV), Xylopia aethiopica (XYA) and Zingiber officinale (ZGO) as eco-friendly and non-toxic mild-steel corrosion inhibitors in H2SO4 solutions.

Design/methodology/approach

Ethanol extracts of TYV leaves, XYA fruits and ZGO roots were used as inhibitors in various corrosion tests. Gravimetric and gasometric techniques were used to characterize the mechanism of inhibition.

Findings

Results indicate that the extracts inhibit the corrosion process efficiently. Inhibition efficiency was found to increase with an increase in extract concentration and decrease with an increase in temperature. Inhibition efficiencies followed the trend TYV > ZGO > XYA. Thermodynamic considerations revealed that the energy of activation increased in the presence of the plant extracts. Adsorption of the plant extracts on mild steel surface occurred spontaneously, and Ea and ΔGads values confirm a physical adsorption processes. Phytochemical studies showed the presence of saponoids, flavonoids and polyphenols whose attachment to adsorption sites on the metal surface is responsible for the inhibition process. Experimental data fit the Langmuir adsorption isotherm.

Practical implications

The plant extracts can be used in chemical cleaning and picking processes.

Originality/value

The research provides information on the possible use of the ethanol extracts from TYV leaves, XYA fruits and ZGO roots as sources of cheap, eco-friendly and non-toxic corrosion inhibitors.

Details

Pigment & Resin Technology, vol. 43 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Available. Content available
2359

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

1 – 10 of 19
Per page
102050