A. Belahcen, E. Dlala, K. Fonteyn and M. Belkasim
The purpose of this paper is to find out how to model iron losses in electrical machines accurately and efficiently.
Abstract
Purpose
The purpose of this paper is to find out how to model iron losses in electrical machines accurately and efficiently.
Design/methodology/approach
The starting point was a previously developed vector hysteresis model that was designed and incorporated into the 2D time‐stepping finite‐element (FE) simulation of induction machines. The developed approach here is a decoupling between the vector hysteresis model and the 2D FE model of the machine. The huge time consumption of the incorporated hysteresis model required some new approach to make the model computationally efficient. This is dealt with through an a posteriori use of the vector hysteresis model.
Findings
In this research, it was found that the vector hysteresis model, although used in an a posteriori scheme is able to accurately predict the iron losses as far as these losses are small enough not to affect the other operation characteristics of the machine.
Research limitations/implications
The research methods reported in this paper deal mainly with induction machines. The methods should be applied for transient operations of the induction machines as well as for other types of machines. The fact that the iron losses do not affect very much the operation characteristics of the machine is based on the fact that the air gap field plays a major role in these machines. The method cannot be applied to other magnetic devices where the iron losses are the main loss component.
Originality/value
The paper is of practical value for designers of electrical machines, who use FE programs. The methods presented here allow them to use a different FE package to simulate the machine and own routines (based on the presented methods) to predict the iron losses without loss of accuracy and in a reasonably short time.
Details
Keywords
Hana Begić, Mario Galić and Uroš Klanšek
Ready-mix concrete delivery problem (RMCDP), a specific version of the vehicle routing problem (VRP), is a relevant supply-chain engineering task for construction management with…
Abstract
Purpose
Ready-mix concrete delivery problem (RMCDP), a specific version of the vehicle routing problem (VRP), is a relevant supply-chain engineering task for construction management with various formulations and solving methods. This problem can range from a simple scenario involving one source, one material and one destination to a more challenging and complex case involving multiple sources, multiple materials and multiple destinations. This paper presents an Internet of Things (IoT)-supported active building information modeling (BIM) system for optimized multi-project ready-mix concrete (RMC) delivery.
Design/methodology/approach
The presented system is BIM-based, IoT supported, dynamic and automatic input/output exchange to provide an optimal delivery program for multi-project ready-mix-concrete problem. The input parameters are extracted as real-time map-supported IoT data and transferred to the system via an application programming interface (API) into a mixed-integer linear programming (MILP) optimization model developed to perform the optimization. The obtained optimization results are further integrated into BIM by conventional project management tools. To demonstrate the features of the suggested system, an RMCDP example was applied to solve that included four building sites, seven eligible concrete plants and three necessary RMC mixtures.
Findings
The system provides the optimum delivery schedule for multiple RMCs to multiple construction sites, as well as the optimum RMC quantities to be delivered, the quantities from each concrete plant that must be supplied, the best delivery routes, the optimum execution times for each construction site, and the total minimal costs, while also assuring the dynamic transfer of the optimized results back into the portfolio of multiple BIM projects. The system can generate as many solutions as needed by updating the real-time input parameters in terms of change of the routes, unit prices and availability of concrete plants.
Originality/value
The suggested system allows dynamic adjustments during the optimization process, andis adaptable to changes in input data also considering the real-time input data. The system is based on spreadsheets, which are widely used and common tool that most stakeholders already utilize daily, while also providing the possibility to apply a more specialized tool. Based on this, the RMCDP can be solved using both conventional and advanced optimization software, enabling the system to handle even large-scale tasks as necessary.
Details
Keywords
Floran Martin, Deepak Singh, Anouar Belahcen, Paavo Rasilo, Ari Haavisto and Antero Arkkio
Recent investigations on magnetic properties of non-oriented (NO) steel sheets enhance the comprehension of the magnetic anisotropy behaviour of widely employed electrical sheets…
Abstract
Purpose
Recent investigations on magnetic properties of non-oriented (NO) steel sheets enhance the comprehension of the magnetic anisotropy behaviour of widely employed electrical sheets. The concept of energy/coenergy density can be employed to model these magnetic properties. However, it usually presents an implicit form which requires an iterative process. The purpose of this paper is to develop an analytical model to consider these magnetic properties with an explicit formulation in order to ease the computations.
Design/methodology/approach
From rotational measurements, the anhysteretic curves are interpolated in order to extract the magnetic energy density for different directions and amplitudes of the magnetic flux density. Furthermore, the analytical representation of this energy is suggested based on statistical distribution which aims to minimize the intrinsic energy of the material. The model is finally validated by comparing measured and computed values of the magnetic field strength.
Findings
The proposed model is based on an analytical formulation of the energy depending on the components of the magnetic flux density. This formulation is composed of three Gumbel distributions. Every functional parameters of energy density is formulated with only four parameters which are calculated by fitting the energy extracted from measurements. Finally, the proposed model is validated by comparing the computation and the measurements of 9
H
loci for NO steel sheets at 10 Hz. The proposed analytical model shows good agreements with an average relative error of 27 per cent.
Originality/value
The paper presents an original analytical method to model magnetic anisotropy for NO electrical sheets. With this analytical formulation, the determination of H does not require any iterative process as it is usually the case with this energy method coupled with implicit function. This method can be easily incorporated in finite element method since it does not require any extra iterative process.
Details
Keywords
Anouar Belahcen, Paavo Rasilo, Thu-Trang Nguyen and Stephane Clénet
The purpose of this paper is to find out how uncertainties in the characterization of magnetic materials propagate through identification and numerical simulation to the…
Abstract
Purpose
The purpose of this paper is to find out how uncertainties in the characterization of magnetic materials propagate through identification and numerical simulation to the computation of iron losses in electrical machines.
Design/methodology/approach
The probabilistic uncertainties in the iron losses are modelled with the spectral approach using chaos polynomials. The Sobol indices are used for the global sensitivity analysis. The machine is modelled with a 2D finite element method and the iron losses are computed with a previously developed accurate method.
Findings
The uncertainties propagate in different ways to the different components of losses, i.e. eddy current, hysteresis, and excess losses. The propagation is also different depending on the investigated region of the machine, i.e. Stator or rotor teeth, yokes, tooth tips.
Research limitations/implications
The method does not account for uncertainties related to the manufacturing process, which might result in even larger variability.
Practical implications
A major implication of the findings is that the identification of iron loss parameters at low frequencies does not affect the loss variability. The identification with high-frequency measurement is very important for the rotor tooth tips. The variability in the excess loss parameters is of low impact.
Originality/value
The presented results are of importance for the magnetic material manufacturers and the electrical machine designers. The manufacturers can plan the measurement and identification procedures as to minimize the output variability of the parameters. The designers of the machine can use the result and the presented procedures to estimate the variability of their design.
Details
Keywords
Valentin Ionita, Lucian Petrescu and Emil Cazacu
The electrical machines connected to modern electric power grids are non-sinusoidal excited, and their augmented losses, including iron losses, limit their working…
Abstract
Purpose
The electrical machines connected to modern electric power grids are non-sinusoidal excited, and their augmented losses, including iron losses, limit their working characteristics. This paper aims to propose a prediction method for iron losses in non-oriented grains (NO) FeSi sheets under non-sinusoidal voltage, involving an inverse classical Preisach hysteresis model and the time-integration of each loss component.
Design/methodology/approach
The magnetic history management in inverse Preisach model is optimized and a numerical Everett function is identified from measured symmetrical hysteresis cycles. The experimental data for sinusoidal waveforms obtained by a single sheet tester were also used to identify the parameters involved in Bertotti’ losses separation method. The non-sinusoidal magnetic induction waveform, corresponding to a measured voltage in an industrial electrical grid, was the input for Preisach model, the output magnetic field being accurately computed. The hysteresis, classical and excess losses are calculated by time-integration and the total losses are compared with those obtained for sinusoidal excitation.
Findings
The proposed method allows to estimate the iron losses for non-sinusoidal magnetic induction, using carefully identified parameters of FeSi NO sheets, using experimental data from sinusoidal regimes.
Originality/value
The method accuracy is assured by using a numerical Everett function, a variable Preisach grid step (adapted for the high non-linearity of FeSi sheets) and high-order fitting polynomials for the microscopic parameters involved in the excess loss estimation. The procedure allows a better design of magnetic cores and an improved estimation of the electric machine derating for non-sinusoidal voltages.
Details
Keywords
Anouar Belahcen, Emad Dlala and Jenni Pippuri
The purpose of this paper is to implement and test a 1D eddy‐current model for laminated iron core of electrical machines and investigate the possibility of incorporating it in a…
Abstract
Purpose
The purpose of this paper is to implement and test a 1D eddy‐current model for laminated iron core of electrical machines and investigate the possibility of incorporating it in a 2D FE analysis.
Design/methodology/approach
The 1D eddy‐current model of laminated core is extended to handle rotating‐field problems and coupling between the x‐ and y‐components of the magnetic field. Explicit coupling terms are introduced in the Jacobean matrix to ensure convergence and time efficiency. The procedure is computationally tested for both the case where there is no feedback to the 2D FE and the case where the results of the eddy‐current model were fed‐back to the 2D analysis.
Findings
The coupling terms ensured fast and robust convergence. The incorporation of the eddy‐current model in the 2D FE analysis is possible, provided some under‐relaxation is used to ensure the convergence of the overall 1D‐2D procedure.
Research limitations/implications
The method has been computationally tested with 2D like procedure corresponding to a 2D model with only one element. The behaviour of the model in actual 2D computation presents some problems related to the convergence of the overall procedure and they have been dealt with in another publication.
Originality/value
The paper is of practical value for designers of electrical machines. On one hand, the model can be used a posteriori to estimate eddy‐current losses in iron stacks, and on the other hand it can be incorporated into 2D FE analysis including the losses in the field solution and enhancing its power and energy balance.
Details
Keywords
Michael Nierla, Manfred Kaltenbacher and Stefan Johann Rupitsch
A major purpose of vector hysteresis models lies in the prediction of power losses under rotating magnetic fields. The well-known vector Preisach model by Mayergoyz has been shown…
Abstract
Purpose
A major purpose of vector hysteresis models lies in the prediction of power losses under rotating magnetic fields. The well-known vector Preisach model by Mayergoyz has been shown to well predict such power losses at low amplitudes of the applied field. However, in its original form, it fails to predict the reduction of rotational power losses at high fields. In recent years, two variants of a novel vector Preisach model based on rotational operators have been published and investigated with respect to general accuracy and performance. This paper aims to examine the capabilities of the named vector Preisach models in terms of rotational hysteresis loss calculations.
Design/methodology/approach
In a first step, both variants of the novel rotational operator-based vector Preisach model are tested with respect to their overall capability to prescribe rotational hysteresis losses. Hereby, the direct influence of the model-specific parameters onto the computable losses is investigated. Afterward, it is researched whether there exists an optimized set of parameters for these models that allows the matching of measured rotational hysteresis losses.
Findings
The theoretical investigations on the influence of the model-specific parameters onto the computable rotational hysteresis losses showed that such losses can be predicted in general and that a variation of these parameters allows to adapt the simulated loss curves in both shape and amplitude. Furthermore, an optimized parameter set for the prediction of the named losses could be retrieved by direct matching of simulated and measured loss curves.
Originality/value
Even though the practical applicability and the efficiency of the novel vector Preisach model based on rotational operators has been proven in previous publications, its capabilities to predict rotational hysteresis losses has not been researched so far. This publication does not only show the general possibility to compute such losses with help of the named vector Preisach models but also in addition provides a routine to derive an optimized parameter set, which allows an accurate modeling of actually measured loss curves.
Details
Keywords
Anouar Belahcen, Floran Martin, Mohammed El-Hadi Zaim, Emad Dlala and Zlatko Kolondzovski
The purpose of this paper is to optimize the stator slot geometry of a high-speed electrical machine, which is used as an assist for a turbocharger. Meanwhile, the suitability of…
Abstract
Purpose
The purpose of this paper is to optimize the stator slot geometry of a high-speed electrical machine, which is used as an assist for a turbocharger. Meanwhile, the suitability of the Particle Swarm algorithm for such a problem is to be tested.
Design/methodology/approach
The starting point of the optimization is an existing design, for which the Particle Swarm algorithm is applied in conjunction with the transient time-stepping 2D finite element method.
Findings
It is found that regardless of its stochastic nature, the Particle Swarm work well for the optimization of electrical machines. The optimized design resulted in an increase of the slot area and increase of the iron loss, which was compensated by a dramatic decrease in the Joule losses.
Research limitations/implications
The optimization was concentrated on the stator design whereas the rotor dimensioning was carried out withing the compressor and turbine design.
Originality/value
A turbocharger with electric assist is designed optimized and manufactured. The Particle Swarm algorithm is shown to be very stable.
Details
Keywords
Leandro dos Santos Coelho, Viviana Cocco Mariani, Marsil de Athayde Costa e Silva, Nelson Jhoe Batistela and Jean Vianei Leite
The purpose of this paper is to introduce a chaotic harmony search (CHS) approach based on the chaotic Zaslavskii map to parameters identification of Jiles-Atherton vector…
Abstract
Purpose
The purpose of this paper is to introduce a chaotic harmony search (CHS) approach based on the chaotic Zaslavskii map to parameters identification of Jiles-Atherton vector hysteresis model.
Design/methodology/approach
In laminated magnetic cores when the magnetic flux rotates in the lamination plane, one observes an increase in the magnetic losses. The magnetization in these regions is very complex needing a vector model to analyze and predict its behavior. The vector Jiles-Atherton hysteresis model can be employed in rotational flux modeling. The vector Jiles-Atherton model needs a set of five parameters for each space direction taken into account. In this context, a significant amount of research has already been undertaken to investigate the application of metaheuristics in solving difficult engineering optimization problems. Harmony search (HS) is a derivative-free real parameter optimization metaheuristic algorithm, and it draws inspiration from the musical improvisation process of searching for a perfect state of harmony. In this paper, a CHS approach based on the chaotic Zaslavskii map is proposed and evaluated.
Findings
The proposed CHS presents an efficient strategy to improve the search performance in preventing premature convergence to local minima when compared with the classical HS algorithm. Numerical comparisons with results using classical HS, genetic algorithms (GAs), particle swarm optimization (PSO), and evolution strategies (ES) demonstrated that the performance of the CHS is promising in parameters identification of Jiles-Atherton vector hysteresis model.
Originality/value
This paper presents an efficient CHS approach applied to parameters identification of Jiles-Atherton vector hysteresis model.
Details
Keywords
Heesung Yoon and Chang Seop Koh
The purpose of this paper is to present the vector magnetic properties of the electrical steel sheet and investigate its influences on the magnetic field and iron loss…
Abstract
Purpose
The purpose of this paper is to present the vector magnetic properties of the electrical steel sheet and investigate its influences on the magnetic field and iron loss distributions for the electrical machines.
Design/methodology/approach
The vector magnetic property of the electrical steel sheet is measured by using a two-dimensional single sheet tester and modelled through an E&S vector hysteresis model to be applied to finite element analysis.
Findings
The magnetic field and iron loss distributions are calculated by finite element analysis combined with the E&S vector hysteresis model for the three-phase transformer and induction motor models.
Originality/value
The influences of the vector magnetic property on the electrical machines are verified by comparing with the numerical results from a scalar magnetic property.