B.J. Gireesha, M. Archana, Prasannakumara B.C., R.S. Reddy Gorla and Oluwole Daniel Makinde
This paper aims to deal with the study of heat and mass transfer on double-diffusive three-dimensional hydromagnetic boundary layer flow of an electrically conducting Casson…
Abstract
Purpose
This paper aims to deal with the study of heat and mass transfer on double-diffusive three-dimensional hydromagnetic boundary layer flow of an electrically conducting Casson nanofluid over a stretching surface. The combined effects of nonlinear thermal radiation, magnetic field, buoyancy forces, thermophoresis and Brownian motion are taken into consideration with convective boundary conditions.
Design/methodology/approach
Similarity transformations are used to reduce the governing partial differential equations into a set of nonlinear ordinary differential equations. The reduced equations were numerically solved using Runge–Kutta–Fehlberg fourth-fifth-order method along with shooting technique.
Findings
The impact of several existing physical parameters such as Casson parameter, mixed convection parameter, regular buoyancy ratio parameter, radiation parameter, Brownian motion parameter, thermophoresis parameter, temperature ratio parameter on velocity, temperature, solutal and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that the solutal component increases for Dufour Lewis number, whereas it decreases for nanofluid Lewis number. Moreover, velocity profiles decrease for Casson parameter, while the Nusselt number increases for Biot number, radiation and temperature ratio parameter.
Originality/value
This paper is a new work related to three-dimensional double-diffusive flow of Casson nanofluid with buoyancy and nonlinear thermal radiation effect.
Details
Keywords
Archana M., Gireesha B.J., Prasannakumara B.C. and Rama Subba Reddy Gorla
The effect of non-linear thermal radiation and variable thermo-physical properties are investigated in the Falkner-Skan flow of a Casson nanofluid in the presence of magnetic…
Abstract
Purpose
The effect of non-linear thermal radiation and variable thermo-physical properties are investigated in the Falkner-Skan flow of a Casson nanofluid in the presence of magnetic field. The paper aims to discuss this issue.
Design/methodology/approach
Selected bunch of similarity transformations are used to reduce the governing partial differential equations into a set of non-linear ordinary differential equations. The resultant equations are numerically solved using Runge-Kutta-Fehlberg fourth-fifth-order method along with shooting technique.
Findings
The velocity, temperature and concentration profiles are evaluated for several emerging physical parameters and are analyzed through graphs and tables in detail.
Research limitations/implications
This study only begins to reveal the research potential and pitfalls of research and publishing on boundary-layer flow, heat and mass transfer of Casson nanofluid past and the moving and static wedge-shaped bodies.
Originality/value
It is found that the presence of non-linear thermal radiation and variable properties has more influence in heat transfer. Furthermore, temperature profile increases as the radiation parameter increases.
Details
Keywords
Gyan Prakash, Sangeeta Sahney, Soujanya Kodati and Archana Shrivastava
Choice Behavior.
Abstract
Subject area
Choice Behavior.
Study level/applicability
The case study deals with cross-gender analysis of impulse buying behavior in apparel shopping in India. Any extrapolation of this study to other markets should take into account that Indian consumers are price sensitive. The buying behavior in apparel shopping may not be directly related to other retail categories such as ready-to-eat food, consumer electronics, etc.
Case overview
Mr Khuswant Chaddha’s family business is in tatters. Market dynamics have changed over the years and his textile mill is no longer the cash cow it once was. His son, Gaurav Chaddha, a recent engineering graduate, plans to save the business by venturing into branded apparel retailing. A key component of this strategy is to figure out impulse shopping behavior in apparel purchases. The gender angle is used to better comprehend the differences in impulse buying emotions so that males and females can be targeted with greater success. A survey of shoppers belonging to suitable demographics is used as the backbone of this study. The analysis of the data presents several dilemmas in some critical business decisions.
Expected learning outcomes
The objectives of the case include: understanding how marketplaces change over time; realizing the fact that businesses should evolve over time and even highly profitable business models can become obsolete pretty fast; studying the factors which influence the choice of an apparel store; understanding impulse buying behavior and how gender plays a decisive role in it and analyzing post purchase behavior with respect to gender.
Supplementary materials
Teaching Notes are available for educators only. Please contact your library to gain login details or email support@emeraldinsight.com to request teaching notes.
Subject code
CSS 8: Marketing.
Details
Keywords
Gireesha B.J., M. Archana, B. Mahanthesh and Prasannakumara B.C.
The purpose of this paper is to explore the effects of binary chemical reaction and activation energy on nano Casson liquid flow past a stretched plate with non-linear radiative…
Abstract
Purpose
The purpose of this paper is to explore the effects of binary chemical reaction and activation energy on nano Casson liquid flow past a stretched plate with non-linear radiative heat, and also, the effect of a novel exponential space-dependent heat source (ESHS) aspect along with thermal-dependent heat source (THS) effect in the analysis of heat transfer in nanofluid. Comparative analysis is carried out between the flows with linear radiative heat process and non-linear radiative heat process.
Design/methodology/approach
A similarity transformation technique is utilised to access the ODEs from the governed PDEs. The manipulation of subsequent non-linear equations is carried out by a well-known numerical approach called Runge–Kutta–Fehlberg scheme. Obtained solutions are briefly discussed with the help of graphical and tabular illustrations.
Findings
The effects of various physical parameters on temperature, nanoparticles volume fraction and velocity fields within the boundary layer are discussed for two different flow situations, namely, flow with linear radiative heat and flow with non-linear radiative heat. It is found that an irregular heat source/sink (ESHS and THS) and non-linear solar radiation play a vital role in the enhancement of the temperature distributions.
Originality/value
The problem is relatively original to study the effects of activation energy and binary chemical reaction along with a novel exponential space-based heat source on laminar boundary flow past a stretched plate in the presence of non-linear Rosseland radiative heat.
Details
Keywords
B. Mahanthesh, B.J. Gireesha, M. Archana, Tasawar Hayat and Ahmed Alsaedi
The features of coated wire product are measured by the flow and heat transport occurring in the interior of dies. Therefore, an understanding of characteristics of polymers…
Abstract
Purpose
The features of coated wire product are measured by the flow and heat transport occurring in the interior of dies. Therefore, an understanding of characteristics of polymers momentum, heat mass transfer and wall shear stress is of great interest. Enhancement of heat transfer rate is fundamental need of wire coating process. Therefore, this study aims to investigate the effect of suspended nanoparticles in heat and mass transport phenomena of third-grade liquid in post-treatment of wire coating process. Buongiorno model for nanofluid is adopted. Two cases of temperature dependent viscosity are considered.
Design/methodology/approach
The governing equations are modelled with the help of steady-state conservation equations of mass, momentum, energy and nanoparticle concentration. Some appropriate dimensionless variables are introduced. Numerical solutions for the nonlinear problem are developed through Runge–Kutta–Fehlberg technique. The outcome of sundry variables for dimensionless flow, thermal and nanoparticle volume fraction fields are scrutinised through graphical illustrations.
Findings
The study’s numerical results disclose that the force on the total wire surface and shear stress at the surface in case of Reynolds Model dominate Vogel’s Model case. Impact of nanoparticles is constructive for force on the total wire surface and shear stress at the surface. The velocity of the coating material can be enhanced by the non-Newtonian property.
Practical implications
This study may provide useful information to improve the wire coating technology.
Originality/value
Effect of nanoparticles in wire coating analysis by using Brownian motion and thermophoresis slip mechanisms is investigated for the first time. Two different models for variable viscosity are used.
Details
Keywords
K. Ganesh Kumar and M. Archana
The purpose of this paper is to model the boundary layer flow and heat transfer of dusty fluid with suspended nanoparticles over a stretching surface. The effect of multiple slip…
Abstract
Purpose
The purpose of this paper is to model the boundary layer flow and heat transfer of dusty fluid with suspended nanoparticles over a stretching surface. The effect of multiple slip and nonlinear thermal radiation is taken into the account. Adequate similarity transformations are used to obtain a set of nonlinear ordinary differential equations to govern formulated problem. The resultant non-dimensionalized boundary value problem is solved numerically using the RKF-45 method. The profiles for velocity and temperature, which are controlled by thermophysical parameters, are presented graphically. Based on these plots, the conclusion is given and the obtained numerical results are tabulated. Observed interesting fact is that the SiO2-water nanoparticles show a thicker thermal boundary layer than TiO2-water nanoparticles.
Design/methodology/approach
The governing partial differential equations are approximated to a system of nonlinear ordinary differential equations by using suitable similarity transformations. An effective fourth–fifth-order Runge–Kutta–Fehlberg integration scheme numerically solves these equations along with a shooting technique. The effects of various pertinent parameters on the flow and heat transfer are examined.
Findings
Present results have an excellent agreement with previous published results in the limiting cases. The values of skin friction and wall temperature for different governing parameters are also tabulated. It is demonstrated that the SiO2-water nanoparticles show a thicker thermal boundary layer than TiO2-water nanoparticles. It is interesting to note that the dusty nanofluids are found to have higher thermal conductivity.
Originality/value
This paper is a new work related to comparative study of TiO2 and SiO2 nanoparticles in heat transfer of dusty fluid flow.
Details
Keywords
Deepika Kishor Nagthane and Archana M. Rajurkar
One of the main reasons for increase in mortality rate in woman is breast cancer. Accurate early detection of breast cancer seems to be the only solution for diagnosis. In the…
Abstract
Purpose
One of the main reasons for increase in mortality rate in woman is breast cancer. Accurate early detection of breast cancer seems to be the only solution for diagnosis. In the field of breast cancer research, many new computer-aided diagnosis systems have been developed to reduce the diagnostic test false positives because of the subtle appearance of breast cancer tissues. The purpose of this study is to develop the diagnosis technique for breast cancer using LCFS and TreeHiCARe classifier model.
Design/methodology/approach
The proposed diagnosis methodology initiates with the pre-processing procedure. Subsequently, feature extraction is performed. In feature extraction, the image features which preserve the characteristics of the breast tissues are extracted. Consequently, feature selection is performed by the proposed least-mean-square (LMS)-Cuckoo search feature selection (LCFS) algorithm. The feature selection from the vast range of the features extracted from the images is performed with the help of the optimal cut point provided by the LCS algorithm. Then, the image transaction database table is developed using the keywords of the training images and feature vectors. The transaction resembles the itemset and the association rules are generated from the transaction representation based on a priori algorithm with high conviction ratio and lift. After association rule generation, the proposed TreeHiCARe classifier model emanates in the diagnosis methodology. In TreeHICARe classifier, a new feature index is developed for the selection of a central feature for the decision tree centered on which the classification of images into normal or abnormal is performed.
Findings
The performance of the proposed method is validated over existing works using accuracy, sensitivity and specificity measures. The experimentation of proposed method on Mammographic Image Analysis Society database resulted in classification of normal and abnormal cancerous mammogram images with an accuracy of 0.8289, sensitivity of 0.9333 and specificity of 0.7273.
Originality/value
This paper proposes a new approach for the breast cancer diagnosis system by using mammogram images. The proposed method uses two new algorithms: LCFS and TreeHiCARe. LCFS is used to select optimal feature split points, and TreeHiCARe is the decision tree classifier model based on association rule agreements.
Details
Keywords
The case illustrates the sequence of events that played out between the customer and his interaction with a Bank from which he availed a credit card and a loan. The failure of…
Abstract
The case illustrates the sequence of events that played out between the customer and his interaction with a Bank from which he availed a credit card and a loan. The failure of service deliverables and deficiencies in the processes of the bank resulted in default of the loan amount and inconvenienced the customer. In the case, the focus on the customer helps in understanding that organizations need to initiate responses for customer satisfaction at their interface points, as expected by its customers. The case is suitable for use in courses on ‘Services Marketing’ for Post Graduate courses and Management Development Programmes.
Details
![Indian Institute of Management Ahmedabad](/insight/static/img/indian-institute-of-management-ahmedabad-logo.png)
Keywords
Iskandar Waini, Anuar Ishak, Ioan Pop and Roslinda Nazar
This paper aims to examine the Cu-Al2O3/water hybrid nanofluid flow over a shrinking sheet in the presence of the magnetic field and dust particles.
Abstract
Purpose
This paper aims to examine the Cu-Al2O3/water hybrid nanofluid flow over a shrinking sheet in the presence of the magnetic field and dust particles.
Design/methodology/approach
The governing partial differential equations for the two-phase flow of the hybrid nanofluid and the dust particles are reduced to ordinary differential equations using a similarity transformation. Then, these equations are solved using bvp4c in MATLAB software. The bvp4c solver is a finite-difference code that implements the three-stage Lobatto IIIa formula. The numerical results are gained for several values of the physical parameters. The effects of these parameters on the flow and the thermal characteristics of the hybrid nanofluid and the dust particles are analyzed and discussed. Later, the temporal stability analysis is used to determine the stability of the dual solutions obtained as time evolves.
Findings
The outcome shows that the flow is unlikely to exist unless satisfactory suction strength is imposed on the shrinking sheet. Besides, the heat transfer rate on the shrinking sheet decreases with the increase of . However, the increase in and lead to enhance the heat transfer rate. Two solutions are found, where the domain of the solutions is expanded with the rising of, and. Consequently, the boundary layer separation on the surface is delayed in the presence of these parameters. Implementing the temporal stability analysis, it is found that only one of the solutions is stable as time evolves.
Originality/value
The dusty fluid problem has been widely studied for the flow over a stretching sheet, but only limited findings can be found for the shrinking counterpart. Therefore, this study considers the problem of the dusty fluid flow over a shrinking sheet containing Cu-Al2O3/water hybrid nanofluid with the effect of the magnetic field. In fact, this is the first study to discover the dual solutions of the dusty hybrid nanofluid flow over a shrinking sheet. Also, further analysis shows that only one of the solutions is stable as time evolves.
Details
Keywords
Ubaidullah Yashkun, Khairy Zaimi, Nor Ashikin Abu Bakar, Anuar Ishak and Ioan Pop
This study aims to investigate the heat transfer characteristic of the magnetohydrodynamic (MHD) hybrid nanofluid over the linear stretching and shrinking surface in the presence…
Abstract
Purpose
This study aims to investigate the heat transfer characteristic of the magnetohydrodynamic (MHD) hybrid nanofluid over the linear stretching and shrinking surface in the presence of suction and thermal radiation effects.
Design/methodology/approach
Mathematical equations are transformed into pairs of self-similarity equations using similarity transformation. Boundary value problem solver (bvp4c) in MATLAB was adopted to solve the system of reduced similarity equations. In this study, the authors particularly examine the flow and heat transfer properties for different values of suction and thermal radiation parameters using single-phase nanofluid model. A comparison of the present results shows a good agreement with the published results.
Findings
It is noticed that the efficiency of heat transfer of hybrid nanofluid (Cu-Al2O3/H2O) is greater than the nanofluid (Cu/H2O). Furthermore, it is also found that dual solutions exist for a specific range of the stretching/shrinking parameter with different values of suction and radiation parameters. The results indicate that the skin friction coefficient and the local Nusselt number increase with suction effect. The values of the skin friction coefficient increases, but the local Nusselt number decreases for the first solution with the increasing of thermal radiation parameter. It is also observed that suction and thermal radiation widen the range of the stretching/shrinking parameter for which the solution exists.
Practical implications
In practice, the investigation on the flow and heat transfer of MHD hybrid nanofluid through a stretching/shrinking sheet with suction and thermal radiation effects is very important and useful. The problems related to hybrid nanofluid has numerous real-life and industrial applications, for example microfluidics, manufacturing, transportation, military and biomedical, etc.
Originality/value
In specific, this study focused on increasing thermal conductivity using a hybrid nanofluid mathematical model. This paper is able to obtain the dual solutions. To the best of author’s knowledge, this study is new and there is no previous published work similar to present study.