Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 19 April 2023

Luying Ju, Zihai Yan, Mingming Wu, Gangping Zhang, Jiajia Yan, Tianci Yu, Pan Ding and Riqing Xu

The purpose of this paper is to suggest an implicit integration method for updating the constitutive relationships in the newly proposed anisotropic egg-shaped elastoplastic…

93

Abstract

Purpose

The purpose of this paper is to suggest an implicit integration method for updating the constitutive relationships in the newly proposed anisotropic egg-shaped elastoplastic (AESE) model and to apply it in ABAQUS.

Design/methodology/approach

The implicit integration algorithm based on the Newton–Raphson method and the closest point projection scheme containing an elastic predictor and plastic corrector are implemented in the AESE model. Then, the integration code for this model is incorporated into the commercial finite element software ABAQUS through the user material subroutine (UMAT) interface to simulate undrained monotonic triaxial tests for various saturated soft clays under different consolidation conditions.

Findings

The comparison between the simulated results from ABAQUS and the experimental results demonstrates the satisfactory performance of this implicit integration algorithm in terms of effectiveness and robustness and the ability of the proposed model to predict the characteristics of soft clay.

Research limitations/implications

The rotational hardening rule in the AESE model together with the implicit integration algorithm cannot be considered.

Originality/value

The singularity problem existing in most elastoplastic models is eliminated by the closed, smooth and flexible anisotropic egg-shaped yield surface form in the AESE model. In addition, this notion leads to an efficient implicit integration algorithm for updating the highly nonlinear constitutive equations for unsaturated soft clay.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 1 of 1
Per page
102050