Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 6 July 2012

Sucheng Liu, Luowei Zhou, Weiguo Lu and Anxin Li

The purpose of this paper is to model and analyze energy transfer through near‐field resonant coupling for high power light‐emitting diode (HPLED) illumination, with the intention…

330

Abstract

Purpose

The purpose of this paper is to model and analyze energy transfer through near‐field resonant coupling for high power light‐emitting diode (HPLED) illumination, with the intention to increase the appreciation and use of the coupled mode theory (CMT) other than the usual equivalent circuit method.

Design/methodology/approach

The CMT is extensively used to analyze the wireless energy transfer system because of its generality, simplicity, accuracy and intuitive understanding of near‐field resonant energy coupling mechanism.

Findings

The CMT forms a general way to model and analyze the non‐radiative magnetic resonant coupling systems. It is suitable not only for low frequency coupling but also for high frequency (of million‐Hertz) in which the circuit parameters are not easily obtained. Optimal coupling condition corresponding to the maximum power transfer is identified based on the CMT, and the multiple limit cycle phenomenon caused by the nonlinear nature of the HPLED is also described on the CMT model.

Originality/value

This paper takes advantages of CMT, i.e. generality, simplicity, accuracy and intuitive understanding to analyze the near‐field resonant energy coupling system. Key characteristics of the systems are explored based on the CMT, not the usual equivalent circuit method. The influence of nonlinear nature of the high power LED on energy transfer is also investigated. This work seeks a more general way than conventional equivalent circuit method to model and analyze the resonant magnetic system and the results obtained could facilitate better understanding of the resonant magnetic coupling mechanism and optimal design of the near‐field energy transfer system.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 1 of 1
Per page
102050