Massimo Viscardi, Maurizio Arena, Liberata Guadagno, Luigi Vertuccio and Giuseppina Barra
The purpose of this paper is to evaluate the applicative potentiality of functional/self-responsive materials in aeronautics. In particular, the study aims to experimentally…
Abstract
Purpose
The purpose of this paper is to evaluate the applicative potentiality of functional/self-responsive materials in aeronautics. In particular, the study aims to experimentally validate the enhancement of structural performances of carbon fibers samples in the presence of nanofillers, as multi-walled carbon nanontubes or microcapsules for the self-healing functionality.
Design/methodology/approach
The paper opted for a mechanical study. Experimental static and dynamic tests on “blank” and modified formulations were performed in order to estimate both strength and damping parameters. A cantilever beam test set-up has been proposed. As a parallel activity, a numerical FE approach has been introduced to assess the correct modeling of the system.
Findings
The paper provides practical and empirical insights about how self-responsive materials react to mechanical solicitations. It suggests that reinforcing a sample positively affects the samples properties since they, de facto, improve the global structural performance. This work highlights that the addition of carbon nanotubes strongly improves the mechanical properties with a simultaneous slight enhancement in the damping performance. Damping properties are, instead, strongly enhanced by the addition of self-healing components. A balanced combination of both fillers could be adopted to increase electrical conductivity and to improve global performance in damping and auto-repairing properties.
Practical implications
The paper includes implications for the use of lightweight composite materials in aeronautics.
Originality/value
This paper fulfills an identified need to study new lightweight self-responsive smart materials for aeronautical structural application.
Details
Keywords
Elisa Calabrese, Pasquale Longo, Carlo Naddeo, Annaluisa Mariconda, Luigi Vertuccio, Marialuigia Raimondo and Liberata Guadagno
The purpose of this paper is to highlight the relevant role of the stereochemistry of two Ruthenium catalysts on the self-healing efficiency of aeronautical resins.
Abstract
Purpose
The purpose of this paper is to highlight the relevant role of the stereochemistry of two Ruthenium catalysts on the self-healing efficiency of aeronautical resins.
Design/methodology/approach
Here, a very detailed evaluation on the stereochemistry of two new ruthenium catalysts evidences the crucial role of the spatial orientation of phenyl groups in the N-heterocyclic carbene ligands in determining the temperature range within the curing cycles is feasible without deactivating the self-healing mechanisms (ring-opening metathesis polymerization reactions) inside the thermosetting resin. The exceptional activity and thermal stability of the HG2MesPhSyn catalyst, with the syn orientation of phenyl groups, highlight the relevant potentiality and the future perspectives of this complex for the activation of the self-healing function in aeronautical resins.
Findings
The HG2MesPhSyn complex, with the syn orientation of the phenyl groups, is able to activate metathesis reactions within the highly reactive environment of the epoxy thermosetting resins, cured up to 180°C, while the other stereoisomer, with the anti-orientation of the phenyl groups, does not preserve its catalytic activity in these conditions.
Originality/value
In this paper, a comparison between the self-healing functionality of two catalytic systems has been performed, using metathesis tests and FTIR spectroscopy. In the field of the design of catalytic systems for self-healing structural materials, a very relevant result has been found: a slight difference in the molecular stereochemistry plays a key role in the development of self-healing materials for aeronautical and aerospace applications.