Yaojie Zheng, Huili Sun, Luchun Yan, Huisheng Yang, Kewei Gao, Xiaolu Pang and Alex A. Volinsky
The purpose of this study is to investigate the effect of ferrite on hydrogen embrittlement (HE) of the 17-4PH stainless steels.
Abstract
Purpose
The purpose of this study is to investigate the effect of ferrite on hydrogen embrittlement (HE) of the 17-4PH stainless steels.
Design/methodology/approach
The effects of ferrite on HE of the 17-4PH stainless steels were investigated by observing microstructure and conducting slow-strain-rate tensile tests and hydrogen permeability tests.
Findings
The microstructure of the ferrite-bearing sample is lath martensite and banded ferrite, and the ferrite-free sample is lath martensite. After hydrogen charging, the plasticity of the two steels is significantly reduced, along with the tensile strength of the ferrite-free sample. The HE susceptibility of the ferrite-bearing sample is significantly lower than the ferrite-free steel, and the primary fracture modes gradually evolved from typical dimple to quasi-cleavage and intergranular cracking. After aging at 480°C for 4 h and hydrogen charging for 12 h, the 40.9% HE susceptibility of ferrite-bearing samples was the lowest. In addition, the hydrogen permeation tests show that ferrite is a fast diffusion channel for hydrogen, and the ferrite-bearing samples have higher effective hydrogen diffusivity and lower hydrogen concentration.
Originality/value
There are a few studies of the ferrite effect on the HE properties of martensitic precipitation hardening stainless steel.
Details
Keywords
Yaojie Zheng, Sun Huili, Luchun Yan, Xiaolu Pang, Alex A. Volinsky and Kewei Gao
High-strength martensitic steels having strong hydrogen embrittlement (HE) susceptibility and the metal carbide (MC) nanoprecipitates of microalloying elements such as Nb, V, Ti…
Abstract
Purpose
High-strength martensitic steels having strong hydrogen embrittlement (HE) susceptibility and the metal carbide (MC) nanoprecipitates of microalloying elements such as Nb, V, Ti and Mo in the steel matrix can effectively improve the HE resistance of steels. This paper aims to review the effect of MC nanoprecipitates on the HE resistance of high-strength martensitic steels.
Design/methodology/approach
In this paper, the effects of MC nanoprecipitates on the HE resistance of high-strength martensitic steels are systematically described in terms of the types of MC nanoprecipitates, the influencing factors, along with numerical simulations.
Findings
The MC nanoprecipitates, which are fine and semicoherent with the matrix, effectively improve the HE resistance of steel through the hydrogen trapping effects and microstructure optimization, but its effect on the HE resistance of steel is controlled by its size, number and distribution state.
Originality/value
This paper summarizes the effects and mechanisms of MC nanoprecipitates on HE performance of high-strength martensitic steel and provides the theoretical basis for corrosion engineers to design high-strength martensitic steels with excellent HE resistance and improve production processes.