Zhenpeng He, Wenqin Gong, Weisong Xie, Guichang Zhang and Zhenyu Hong
Piston ring dynamic problem plays an important role in the lubricant characteristics of a reciprocating engine, which lead to engine wear and the increased consumption of…
Abstract
Purpose
Piston ring dynamic problem plays an important role in the lubricant characteristics of a reciprocating engine, which lead to engine wear and the increased consumption of lubricating oil. A cavitation analysis of the piston ring lubrication with two-dimensional Reynolds equation has rarely been reported owing to the complex working condition. The purpose of this study is to establish a precise model that can provide guidance for the design of the piston ring.
Design/methodology/approach
In this paper, a cavitation model and its effect on the piston ring lubrication was studied in a simulation program based on the mass-conserving theory which is solved by means of the Newton–Raphson method. In this study, some models such as mixed lubrication, asperity contact, blow-by/blow-back flow and cavitation have been coupled with the lubrication model.
Findings
The established model has been compared with the traditional model that deals with cavitation by using the Reynolds boundary condition algorithm. The cavitation zone, pressure distribution and density distribution between the piston ring and the cylinder have also been predicted. Studies of the changing trend for the pressure distribution and the cavitation zone at few typical crank angles have been listed to illustrate the cavitation changing rule. The analysis of the results indicates that the developed simulation model can adequately illustrate the lubrication problem of the piston ring system. All the analyses will provide guidance for the oil film rupture and the reformation process.
Originality/value
A two-dimensional cavitation model based on the mass-conserving theory has been built. The cavitation-forming and -developing process for the piston ring–liner lubrication has been studied. Non-cavitation occurs in the vicinity of top dead center and bottom dead center. The non-cavitation period will be longer in the vicinity of 360° of crank angle. The density distribution in the cavitation zone can be obtained.
Details
Keywords
This paper aims to give the guidance for the design of the bearing.
Abstract
Purpose
This paper aims to give the guidance for the design of the bearing.
Design/methodology/approach
The finite element method, the multi-body dynamics method, the finite difference method and the tribology are combined to analyze the lubrication.
Findings
The performance parameters of crankshaft-bearing system such as the misalignment, the oil filling ratio and the oil groove are also investigated. Misalignment causes the pressure to incline on one side and the pressure increases obviously. Filling ratio has great relationship with pressure distribution; the factors influencing the filling ratio are also analyzed. Different oil groove models are investigated, as it can provide the theory for oil groove design, and three factors above are always combined to influence the lubrication characteristics.
Originality/value
The optimization of bearing system is conducted by orthogonal test and neural network, unlike the linear optimization theory. Neural network uses the nonlinear theory to optimize crankshaft-bearing system.
Details
Keywords
Jingjing Zhao, Yuan Li, Liang Xie and Jinxiang Liu
This study aims to propose an optimization framework using deep neural networks (DNN) coupled with nondominated sorting genetic algorithm II and technique for order preference by…
Abstract
Purpose
This study aims to propose an optimization framework using deep neural networks (DNN) coupled with nondominated sorting genetic algorithm II and technique for order preference by similarity to an ideal solution method to improve the tribological properties of camshaft bearing pairs of internal combustion engine.
Design/methodology/approach
A lubrication model based on the theory of elastohydrodynamic lubrication and flexible multibody dynamics was developed for a V6 diesel engine. Setting DNN model as fitness function, the multi-objective optimization genetic algorithm and decision-making method were used to optimize the bearing pair structure with the goal of minimizing the total friction loss and the difference of the average values of minimum oil film thickness.
Findings
The results show that the lubrication state corresponding to the optimized bearing pair structure is elastohydrodynamic lubrication. Compared with the original structure, the optimized structure significantly reduces the total friction loss.
Originality/value
The optimized performance and corresponding structural parameters are obtained, and the optimization results were verified through multibody dynamics simulation.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0417/
Details
Keywords
Xiaopeng Wang, Kun Peng, Meiyun Zhao, Hongliang Tian and Hongling Qin
The purpose of this paper is to propose a wheel/rail mixed lubrication model to study the water lubrication behavior of wheel/rail contact interface.
Abstract
Purpose
The purpose of this paper is to propose a wheel/rail mixed lubrication model to study the water lubrication behavior of wheel/rail contact interface.
Design/methodology/approach
The numerical simulation method is applied in this paper. A deterministic mixed lubrication model considering surface roughness and transient state is established. The quasi-system numerical and finite difference method are used for numerical solution. The model is verified by comparing with the experimental data in the literature under the same conditions.
Findings
Under wet conditions, the change of train speed will change the lubrication state of the wheel/rail contact interface. With an increasing speed, the average film thickness and the film thickness ratio increase, while the adhesion coefficient, the contact load ratio and the contact area ratio decrease. When the creep ratio increases from 0% to 0.5%, the wheel/rail adhesion coefficient and subsurface stress increase sharply. With the increase of axle load, the average film thickness decreases and the adhesion coefficient increases.
Practical implications
This paper aims to improve the mixed lubrication theory by analyzing the characteristics of wheel/rail friction and lubrication, so as to provide some guidance and theory for train driving behavior.
Originality/value
Using the deterministic model, the lubrication state of the wheel/rail contact interface affected by various external factors and the adhesion behavior of wheel/rail progressive process from boundary lubrication to mixed lubrication are studied.
Details
Keywords
Rajesh Shah, Blerim Gashi, Vikram Mittal, Andreas Rosenkranz and Shuoran Du
Tribological research is complex and multidisciplinary, with many parameters to consider. As traditional experimentation is time-consuming and expensive due to the complexity of…
Abstract
Purpose
Tribological research is complex and multidisciplinary, with many parameters to consider. As traditional experimentation is time-consuming and expensive due to the complexity of tribological systems, researchers tend to use quantitative and qualitative analysis to monitor critical parameters and material characterization to explain observed dependencies. In this regard, numerical modeling and simulation offers a cost-effective alternative to physical experimentation but must be validated with limited testing. This paper aims to highlight advances in numerical modeling as they relate to the field of tribology.
Design/methodology/approach
This study performed an in-depth literature review for the field of modeling and simulation as it relates to tribology. The authors initially looked at the application of foundational studies (e.g. Stribeck) to understand the gaps in the current knowledge set. The authors then evaluated a number of modern developments related to contact mechanics, surface roughness, tribofilm formation and fluid-film layers. In particular, it looked at key fields driving tribology models including nanoparticle research and prosthetics. The study then sought out to understand the future trends in this research field.
Findings
The field of tribology, numerical modeling has shown to be a powerful tool, which is both time- and cost-effective when compared to standard bench testing. The characterization of tribological systems of interest fundamentally stems from the lubrication regimes designated in the Stribeck curve. The prediction of tribofilm formation, film thickness variation, fluid properties, asperity contact and surface deformation as well as the continuously changing interactions between such parameters is an essential challenge for proper modeling.
Originality/value
This paper highlights the major numerical modeling achievements in various disciplines and discusses their efficacy, assumptions and limitations in tribology research.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0076/
Details
Keywords
Lidui Wei, Haijun Wei, Shulin Duan and Yu Zhang
The purpose of this paper is to develop a good calculation model to accurately predict the lubrication characteristic of main bearings of diesel engine and improve the service…
Abstract
Purpose
The purpose of this paper is to develop a good calculation model to accurately predict the lubrication characteristic of main bearings of diesel engine and improve the service life.
Design/methodology/approach
Based on the coupling of the whole flexible engine block and the flexible crankshaft reduced by the Component Mode Synthesis (CMS) method, considering mass-conserving boundary conditions, the average flow model equation and Greenwood/Tripp asperity contact theory, an elastohydrodynamic (EHD)-mixed lubrication model of the main bearings for the diesel engine is developed and researched with the finite volume method and the finite element method.
Findings
Obviously, the mixed lubrication of bearings is normal, while full hydrodynamic lubrication is transient. The results show that under the whole flexible block model, maximum oil film pressure, maximum asperity contact pressure and radial shell deformation decrease, while minimum oil film thickness increases. Oil flow over edge decreases, and so does friction loss. Therefore, coordination deformation ability of whole engine block is favorable to mean load. In the whole block model, friction contact happens on both upper shell and lower shell positions. In addition, average oil film fill ratio at the key position becomes smaller in the whole engine block model, and consequently increases the chances of cavitations erosion more. So, wearing resistance of both upper and lower shells and anti-cavitations erosion ability must be enhanced simultaneously.
Originality/value
Based on the coupling of the whole flexible engine block and the flexible crankshaft reduced by the CMS method, considering mass-conserving boundary conditions, the average flow model equation and Greenwood/Tripp asperity contact theory, an EHD-mixed lubrication model of the main bearings for the diesel engine is built, which can predict the lubrication of journal bearings more accurately.
Details
Keywords
Ziyang Jiang, Chang Zhang, Wenjun Ni and ShuangTian Li
This paper aims to study the problem of starvation lubrication of high-speed ball bearings due to temperature rise during operation and to avoid thermal failure of bearing…
Abstract
Purpose
This paper aims to study the problem of starvation lubrication of high-speed ball bearings due to temperature rise during operation and to avoid thermal failure of bearing lubrication.
Design/methodology/approach
Under the quasi-statics model of grease lubrication, both the oil film dragging force and the rolling friction between the balls and raceways collectively counteract the gyroscopic torque. Initially, the static model for grease lubrication is solved, followed by calculating the generated heat using the local heat generation method and ultimately the multinodal thermal network model is solved, and the solved results of the quasi-statics are updated by the temperatures of the grease nodes based on the relationship of the grease temperature and viscosity, as well as the relationship of the viscosity and the film thickness.
Findings
By comparing the numerical calculation results of bearings under different working conditions, the influence of starvation lubrication on the oil film thickness, oil film drag force and rolling friction of bearings is discussed, and it is found that the numerical calculation results of the outer ring temperature of bearings under the starvation lubrication due to the consideration of temperature rise are closer to the experimental values.
Originality/value
This study reveals the dynamic characteristics of bearings under starvation lubrication, which is more practical and engineering guiding significance for the design of bearings, and introduces a new method and basis for the calculation of temperature rise of rolling bearings.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2024-0208/
Details
Keywords
Hongyu Duan, Qingtao Yu and Zhijian Wang
The purpose of this paper is to study the film-forming capacity of logarithmic crowned roller for tapered roller bearing (TRB) and to design a tapered roller profile based on an…
Abstract
Purpose
The purpose of this paper is to study the film-forming capacity of logarithmic crowned roller for tapered roller bearing (TRB) and to design a tapered roller profile based on an elastohydrodynamic lubrication model.
Design/methodology/approach
A coupled model, incorporating a quasi-static model of TRBs and an elastohydrodynamic lubrication model was developed to investigate the load distribution of TRB and to evaluate the lubrication state of tapered roller/raceway contact.
Findings
The model is verified with published literature results. Parametric analysis is conducted to investigate the effect of crown drop on azimuthal load distribution of the roller, film thickness and pressure distribution in the contact area. The result shows that crown drop has little influence on the azimuthal load distribution; also, the film thickness and the pressure distribution are asymmetric. When the tapered roller is designed and manufactured, the crown drop of the small end should be larger than that in the large end.
Originality/value
Precise roller profile design is conducive to improve the fatigue life of TRBs. Currently, most crown design methods neglect the influence of lubrication, which can lead to a non-suitable roller profile. Therefore, the present work is undertaken to optimize roller profiles based on lubrication theory.
Details
Keywords
Jun Cheng and Chunxing Gu
As the crucial support component of the propeller power system, the reliability of the operation of submersible pumps is influenced by the lubrication performance of…
Abstract
Purpose
As the crucial support component of the propeller power system, the reliability of the operation of submersible pumps is influenced by the lubrication performance of water-lubricated thrust bearings. When the water-lubricated thrust bearings are under start-stop or heavy load conditions, the effect of surface morphology is crucial as the mixed lubrication regime is encountered. This paper aims to develop one mixed lubrication model for the water-lubricated thrust bearings to predict the effects of surface skewness, kurtosis and roughness orientation on the loading carrying capacity and tribological behavior.
Design/methodology/approach
This paper developed one improved mixed lubrication model specifically for the water-lubricated thrust bearing system. In this model, the hydrodynamic model was improved by using the height of the rough surface and its probability density function, combined with the average flow model. The asperity contact model was improved by using the equation for the Pearson system of frequency curves to characterize the non-Gaussian aspect of surface roughness distribution.
Findings
According to the results, negative skewness, large kurtosis and lateral surface pattern can improve the tribological performance of water-lubricated thrust bearings. Optimizing the surface morphology is a reasonable design method that can improve the performance of water-lubricated thrust bearings.
Originality/value
In this paper, one mixed lubrication model specifically for the water-lubricated thrust bearing with the effect of surface roughness into consideration was developed. Based on the developed model, the effect of surface morphology on tribological behavior can be evaluated.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0247/
Details
Keywords
The analysis carried out in this study can provide guidance for manufacturers and researchers to design a piston for the development of engines.
Abstract
Purpose
The analysis carried out in this study can provide guidance for manufacturers and researchers to design a piston for the development of engines.
Design/methodology/approach
Running conditions for pistons have become very severe because of the high combustion pressure and increase in piston temperature in the past 10 years. The precision of the model has a great effect on the power transmission, vibration noise emission. In this paper, the model was established with lubrication and dynamic governing equations, which were solved using finite element method coupled with Runge–Kutta method. A piston of an inline six-cylinder engine was studied, and some structural parameters were used to investigate its effect on the friction loss with lubrication and dynamic motion theory.
Findings
Based on the analyses, the effect of the friction load at the oil groove and thermal deformation of piston skirt were added to the model, and some useful information about the friction loss and dynamic characteristics were compared.
Originality/value
All the results will provide guidance for the development of the piston and reduction in the friction loss and wear.