Search results

1 – 4 of 4
Article
Publication date: 19 November 2020

Yun-lei Wang, Jiu-hui Wu, Zhen-tao Li and Lu-shuai Xu

The purpose of this paper is to investigate the effect of slip position on the performance of liquid film seal.

Abstract

Purpose

The purpose of this paper is to investigate the effect of slip position on the performance of liquid film seal.

Design/methodology/approach

A mathematical model of liquid film seal with slip/no-slip surface was established based on the Navier slip model and JFO boundary condition. Liquid film governing equation was discretized by the finite difference method and solved by the SOR relaxation iterative algorithm and the effects of slip position on sealing performance are discussed.

Findings

The results indicate that boundary slip plays an important role in the overall performance of a seal and a reasonable arrangement of slip position can improve the steady-state performance of liquid film seal.

Originality/value

Based on the mathematical model, the optimal parameters for liquid film seal with boundary slip at groove are obtained. The results presented in this study are expected to provide a theoretical basis to improve the design method of liquid film seal.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2020-0082/

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 October 2018

Mu-ming Hao, Wen-jing Yang, Heng-chao Cao, Lu-shuai Xu, Yun-lei Wang and Yong-fan Li

The purpose of this paper is to investigate the dynamic characteristics of a spiral groove liquid film seal considering the effect of cavitation.

Abstract

Purpose

The purpose of this paper is to investigate the dynamic characteristics of a spiral groove liquid film seal considering the effect of cavitation.

Design/methodology/approach

A mathematical model of a spiral groove liquid film seal was established based on the mass-conserving Jakobsson–Floberg–Olsson cavitation boundary condition. The film rupture and film reformation boundaries were assumed to be unchanged under infinitesimal perturbation conditions. Governing equations under steady and perturbed states were solved by the finite element method, and then the dynamic characteristics of the spiral groove liquid film seal were theoretically investigated considering the effect of cavitation.

Findings

The results indicate that dynamic coefficients considering cavitation are smaller than those neglecting cavitation. The difference value is consistent with the change in cavitation area. The liquid film seal does not suffer axial instability whether considering cavitation, but its angular instability is more likely to occur when cavitation is considered.

Originality/value

For liquid lubricated non-contacting mechanical seals, the dynamic characteristics considering cavitation are investigated. The results are expected to provide a theoretical basis for improving the design method of liquid film seals.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 July 2019

Yun-Lei Wang, Jiu-Hui Wu, Mu-Ming Hao and Lu-Shuai Xu

The purpose of this paper is to investigate the effect of boundary slip on hydrodynamic performance of liquid film seal considering cavitation.

Abstract

Purpose

The purpose of this paper is to investigate the effect of boundary slip on hydrodynamic performance of liquid film seal considering cavitation.

Design/methodology/approach

A mathematical model of liquid film seal with slip surface was established based on the Navier slip model and Jakobsson–Floberg–Olsson (JFO) boundary condition. Liquid film governing equation was discretized by the finite difference method and solved by the SOR relaxation iterative algorithm and the hydrodynamic performance parameters of liquid film seal were obtained considering boundary slip and cavitation.

Findings

The results indicate that the values of performance parameters are affected significantly by the slip length under the condition of high speed and low differential pressure.

Originality/value

The performances of liquid film seal are investigated considering slip surface and cavitation. The results presented in the study are expected to provide a theoretical basis to improve the design method of liquid film seal.

Details

Industrial Lubrication and Tribology, vol. 71 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 August 2023

Hongwei Zhang, Shihao Wang, Hongmin Mi, Shuai Lu, Le Yao and Zhiqiang Ge

The defect detection problem of color-patterned fabric is still a huge challenge due to the lack of manual defect labeling samples. Recently, many fabric defect detection…

182

Abstract

Purpose

The defect detection problem of color-patterned fabric is still a huge challenge due to the lack of manual defect labeling samples. Recently, many fabric defect detection algorithms based on feature engineering and deep learning have been proposed, but these methods have overdetection or miss-detection problems because they cannot adapt to the complex patterns of color-patterned fabrics. The purpose of this paper is to propose a defect detection framework based on unsupervised adversarial learning for image reconstruction to solve the above problems.

Design/methodology/approach

The proposed framework consists of three parts: a generator, a discriminator and an image postprocessing module. The generator is able to extract the features of the image and then reconstruct the image. The discriminator can supervise the generator to repair defects in the samples to improve the quality of image reconstruction. The multidifference image postprocessing module is used to obtain the final detection results of color-patterned fabric defects.

Findings

The proposed framework is compared with state-of-the-art methods on the public dataset YDFID-1(Yarn-Dyed Fabric Image Dataset-version1). The proposed framework is also validated on several classes in the MvTec AD dataset. The experimental results of various patterns/classes on YDFID-1 and MvTecAD demonstrate the effectiveness and superiority of this method in fabric defect detection.

Originality/value

It provides an automatic defect detection solution that is convenient for engineering applications for the inspection process of the color-patterned fabric manufacturing industry. A public dataset is provided for academia.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 4 of 4