Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 23 September 2019

Zoubida Chorfi, Abdelaziz Berrado and Loubna Benabbou

Evaluating the performance of supply chains is a convoluted task because of the complexity that is inextricably linked to the structure of the aforesaid chains. Therefore, the…

253

Abstract

Purpose

Evaluating the performance of supply chains is a convoluted task because of the complexity that is inextricably linked to the structure of the aforesaid chains. Therefore, the purpose of this paper is to present an integrated approach for evaluating and sizing real-life health-care supply chains in the presence of interval data.

Design/methodology/approach

To achieve the objective, this paper illustrates an approach called Latin hypercube sampling by replacement (LHSR) to identify a set of precise data from the interval data; then the standard data envelopment analysis (DEA) models can be used to assess the relative efficiencies of the supply chains under evaluation. A certain level of data aggregation is suggested to improve the discriminatory power of the DEA models and an experimental design is conducted to size the supply chains under assessment.

Findings

The newly developed integrated methodology assists the decision-makers (DMs) in comparing their real-life supply chains against peers and sizing their resources to achieve a certain level of production.

Practical implications

The proposed integrated DEA-based approach has been successfully implemented to suggest an appropriate structure to the actual public pharmaceutical supply chain in Morocco.

Originality/value

The originality of the proposed approach comes from the development of an integrated methodology to evaluate and size real-life health-care supply chains while taking into account interval data. This developed integrated technique certainly adds value to the health-care DMs for modelling their supply chains in today's world.

Details

Journal of Modelling in Management, vol. 15 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

1 – 1 of 1
Per page
102050