Innovation is the fundamental driving force for the long-term sustainable development of an economy. After four decades of rapid economic growth, China is facing crises related to…
Abstract
Purpose
Innovation is the fundamental driving force for the long-term sustainable development of an economy. After four decades of rapid economic growth, China is facing crises related to a demographic structure of “aging before getting rich,” industrial overcapacity of low-end products and environmental and resources constraints. This paper aims to discuss these issues.
Design/methodology/approach
Based on logical analysis and recapitulation of previous empirical research, this study presents the conclusion.
Findings
Scientific and technological innovation, as strategic support to improve social productivity and overall national strength, must be placed at the center of the country’s overall development.
Originality/value
The development model that preys upon cheap resources for extensive growth is unsustainable. Thus, the country needs an urgent strategic switch to drive its economic growth through research and development innovation and original technological advancement.
Details
Keywords
Yang Zhou, Long Wang, Yongbin Lai and Xiaolong Wang
The coupling process between the loading mechanism and the tank car mouth is a crucial step in the tank car loading process. The purpose of this paper is to design a method to…
Abstract
Purpose
The coupling process between the loading mechanism and the tank car mouth is a crucial step in the tank car loading process. The purpose of this paper is to design a method to accurately measure the pose of the tanker car.
Design/methodology/approach
The collected image is first subjected to a gray enhancement operation, and the black parts of the image are extracted using Otsu’s threshold segmentation and morphological processing. The edge pixels are then filtered to remove outliers and noise, and the remaining effective points are used to fit the contour information of the tank car mouth. Using the successfully extracted contour information, the pose information of the tank car mouth in the camera coordinate system is obtained by establishing a binocular projection elliptical cone model, and the pixel position of the real circle center is obtained through the projection section. Finally, the binocular triangulation method is used to determine the position information of the tank car mouth in space.
Findings
Experimental results have shown that this method for measuring the position and orientation of the tank car mouth is highly accurate and can meet the requirements for industrial loading accuracy.
Originality/value
A method for extracting the contours of various types of complex tanker mouth is proposed. This method can accurately extract the contour of the tanker mouth when the contour is occluded or disturbed. Based on the binocular elliptic conical model and perspective projection theory, an innovative method for measuring the pose of the tanker mouth is proposed, and according to the space characteristics of the tanker mouth itself, the ambiguity of understanding is removed. This provides a new idea for the automatic loading of ash tank cars.
Details
Keywords
Long Wang, Fengtao Wang, Linkai Niu, Xin Li, Zihao Wang and Shuping Yan
The purpose of this paper is to combine triboelectric nanogeneration technology with ball bearing structure to achieve energy collection and fault monitoring.
Abstract
Purpose
The purpose of this paper is to combine triboelectric nanogeneration technology with ball bearing structure to achieve energy collection and fault monitoring.
Design/methodology/approach
In this paper, according to the rotation mode of ball bearings, the freestanding mode of triboelectric nanogeneration is selected to design and manufacture a novel triboelectric nanogeneration device Rolling Ball Triboelectric Nanogenerator (RB-TENG) which combines rotary energy collection with ball bearing fault self-sensing.
Findings
The 10,000s continuous operation experiment of the RB-TENG is carried out to verify its robustness. The accurate feedback relationship between the RB-TENG and rotation velocity can be demonstrated by the fitting comparison between the theoretical and experimental electrical signal periods at a certain time. By comparing the output electrical signals of the normal RB-TENG and the rotor spalling RB-TENG and polytetrafluoroethylene (PTFE) balls with different degrees of wear at 500 r/min, it can be concluded that the RB-TENG has an ideal monitoring effect on the radial clearance distance of bearings. The spalling fault test of the RB-TENG stator inner ring and rotor outer ring is carried out.
Originality/value
Through coupling experiments of rotor spalling fault of the RB-TENG and PTFE balls fault with different degrees of wear, it can be seen that when rotor spalling fault occurs, balls wear has a greater impact on the normal operation of the RB-TENG, and it is easier to identify. The fault self-sensing ability of the RB-TENG can be obtained, which is expected to provide an effective scheme for monitoring the radial wear clearance distance of ball bearings.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2024-0295/
Details
Keywords
Jun Wang, Zili Li, Gan Cui, JianGuo Liu, Chuanping Kong, Long Wang, Ge Gao and Jian Guo
The purpose of this paper is to study the corrosion behaviors of X70 steel under direct current (DC) interference at 0-1,200 A/m2 in simulated soil solution.
Abstract
Purpose
The purpose of this paper is to study the corrosion behaviors of X70 steel under direct current (DC) interference at 0-1,200 A/m2 in simulated soil solution.
Design/methodology/approach
The Tafel polarization curves of X70 steel under DC interference were tested using electrochemical method, the corrosion rate was calculated using weight-loss method and the change in steel surface was analyzed by optical microscopy.
Findings
The results showed that E-I polarization curves under 200-1,200 A/m2 interference were linear; with an increase in the DC density, the corrosion potential of X70 steel shifted positively, solution pH after the weight-loss tests increased and corrosion rate increased linearly. A mathematical relationship between polarization resistance Rp and current density was established. Corrosion morphology indicated that pitting corrosion and crevice corrosion occurred on the X70 steel under DC interference in simulated soil solution.
Originality/value
All tests were conducted at a relative higher DC density (200-1,200 A/m2). The linear fitting method is proposed to fit data of Tafel polarization curves under DC interference. This study provides guidelines for safe operation of X70 steel pipelines.
Details
Keywords
Tan Zhang, Zhanying Huang, Ming Lu, Jiawei Gu and Yanxue Wang
Rotating machinery is a crucial component of large equipment, and detecting faults in it accurately is critical for reliable operation. Although fault diagnosis methods based on…
Abstract
Purpose
Rotating machinery is a crucial component of large equipment, and detecting faults in it accurately is critical for reliable operation. Although fault diagnosis methods based on deep learning have been significantly developed, the existing methods model spatial and temporal features separately and then weigh them, resulting in the decoupling of spatiotemporal features.
Design/methodology/approach
The authors propose a spatiotemporal long short-term memory (ST-LSTM) method for fault diagnosis of rotating machinery. The authors collected vibration signals from real rolling bearing and gearing test rigs for verification.
Findings
Through these two experiments, the authors demonstrate that machine learning methods still have advantages on small-scale data sets, but our proposed method exhibits a significant advantage due to the simultaneous modeling of the time domain and space domain. These results indicate the potential of the interactive spatiotemporal modeling method for fault diagnosis of rotating machinery.
Originality/value
The authors propose a ST-LSTM method for fault diagnosis of rotating machinery. The authors collected vibration signals from real rolling bearing and gearing test rigs for verification.
Details
Keywords
Hong-Bo Jiang, Zou-Yang Fan, Jin-Long Wang, Shih-Hao Liu and Wen-Jing Lin
This study adopts the elaboration likelihood model and configuration perspectives to explore the internal mechanisms underlying the influence of live streaming on consumer trust…
Abstract
Purpose
This study adopts the elaboration likelihood model and configuration perspectives to explore the internal mechanisms underlying the influence of live streaming on consumer trust building and purchase intention.
Design/methodology/approach
This study invited 757 experienced live streaming e-commerce users from Chinese platforms such as TikTok and RED, who participated in survey by filling questionnaires collected online. The research employed a mixed-method approach using SEM and fsQCA. SEM was utilized to analyze quantitative data to determine the direct and mediated relationships within product trust, while fsQCA served as a complement to identify the combinations of conditions that enhance product trust.
Findings
The findings reveal three important insights. Firstly, in the context of live streaming e-commerce, both product characteristics and streamer characteristics significantly influence consumers' trust in products. The para-social interaction plays a partial mediating role in the relationship between streamer characteristics and product trust. Secondly, four distinct paths are identified that contribute to enhancing product trust in live streaming e-commerce. Thirdly, PSI emerging as a core condition across all four paths, underscores the importance for merchants to foster positive social interactions with consumers beyond the live streaming environment.
Originality/value
This study enhances understanding of the dynamic live streaming e-commerce industry, offering insights into consumer behavior and practical guidance for merchants seeking to build engaged, trustworthy customer relationships.
Details
Keywords
Kairong Shi, Zhijian Ruan, Zhengrong Jiang, Quanpan Lin and Long Wang
The purpose of this paper is to propose a new hybrid algorithm, named improved plant growth simulation algorithm and genetic hybrid algorithm (PGSA-GA), for solving structural…
Abstract
Purpose
The purpose of this paper is to propose a new hybrid algorithm, named improved plant growth simulation algorithm and genetic hybrid algorithm (PGSA-GA), for solving structural optimization problems.
Design/methodology/approach
PGSA-GA is based on PGSA and three improved strategies, namely, elitist strategy of morphactin concentration calculation, strategy of intelligent variable step size and strategy of initial growth point selection based on GA. After a detailed formulation and explanation of its implementation, PGSA-GA is verified using the examples of typical truss and single-layer lattice shell.
Findings
Improved PGSA-GA was implemented and optimization was carried out for two typical optimization problems; then, a comparison was made between the PGSA-GA and other methods. The results show that the method proposed in the paper has the advantages of high efficiency and rapid convergence, which enable it to be used for the optimization of various types of steel structures.
Originality/value
Through the examples of typical truss and single-layer lattice shell, it shows that the optimization efficiency and effect of PGSA-GA are better than those of other algorithms and methods, such as GA, secondary optimization method, etc. The results show that PGSA-GA is quite suitable for structural optimization.
Details
Keywords
Yue Wang, Longqing Zou, Hailong Fu, Congcong Huang and Jiaqi Liu
Wear failure happens frequently in rubber seal of high-speed rotating shaft because of the dry friction. Some traditional lubrication methods are not effective because of the…
Abstract
Purpose
Wear failure happens frequently in rubber seal of high-speed rotating shaft because of the dry friction. Some traditional lubrication methods are not effective because of the restrictions on the relative high speed, temperature and others. This paper aims to present a new method of lubrication with gas film for the rotation shaft seal based on the contact design.
Design/methodology/approach
To obtain the generation condition of gas film and good effect of lubrication in the contact gap between the shaft and its seal, a series of micro-spiral grooves are designed on the contact surface of rubber seal so as to obtain a continuous dynamic pressure difference.
Findings
The result is that the distribution of the gas film in the micro-gap is continuous under the design of the spiral grooves and the contact with eccentricity because of the deformation of rubber seal, which is verified through the simulation calculation and experiment test. It is confirmed that the lubrication method with gas film through designing micro-spiral grooves on the contact surface is effective, and can achieve self-adaptive air lubrication for the high-speed shaft under the premise of the reliable sealing.
Originality/value
The method of gas film lubrication is realized through designing a microstructure of spiral grooves on the rubber surface to change the contact status, which can form a mechanism of adaptive lubrication to reduce the dry friction automatically in the contact gap. For the cross-scale difference between the rubber seal and gas film, a new modeling method is presented by building the mapping relation for the split blocks and repairing technique with integrated computer engineering and manufacturing, to reduce the possibility of nonconvergence and improve the efficiency and accuracy of calculation.
Details
Keywords
Shan Peng, Ranran Yang, Binglong Lei, Yun Gao, Renhua Chen, Xiaohong Xia and Kevin P. Homewood
This paper aims to systematically demonstrate a methodology to determine the relative and absolute encapsulation efficiencies (αRe and αAb) for thermally- and chemically-robust…
Abstract
Purpose
This paper aims to systematically demonstrate a methodology to determine the relative and absolute encapsulation efficiencies (αRe and αAb) for thermally- and chemically-robust inorganic pigments, typically like ZrSiO4-based pigments, thereby enhancing their coloring performance.
Design/methodology/approach
The authors designed a route, surplus alkali-decomposition and subsequently strong-acid dissolution (SAD2) to completely decompose three classic zircon pigments (Pr–ZrSiO4, Fe2O3@ZrSiO4 and CdS@ZrSiO4) into clear solutions and preferably used inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine the concentrations of host elements and chromophores, thereby deriving the numeric data and interrelation of αRe and αAb.
Findings
Zircon pigments can be thoroughly decomposed into some dissoluble zirconate–silicate resultants by SAD2 at a ratio of the fluxing agent to pigment over 6. ICP-OES is proved more suitable than some other quantification techniques in deriving the compositional concentrations, thereby the values of αRe and αAb, and their transformation coefficient KRA, which maintains stably within 0.8–0.9 in Fe2O3@ZrSiO4 and CdS@ZrSiO4 and is slightly reduced to 0.67–0.85 in Pr–ZrSiO4.
Practical implications
The SAD2 method and encapsulation efficiencies are well applicable for both zircon pigments and the other pigmental or non-pigmental inhomogeneous systems in characterizing their accurate composition.
Originality/value
The authors herein first proposed strict definitions for the relative and absolute encapsulation efficiencies for inorganic pigments, developed a relatively stringent methodology to determine their accurate values and interrelation.
Details
Keywords
To develop the theory and application of the grey prediction model, this investigation constructs a novel discrete grey Riccati model termed DGRM(1,1).
Abstract
Purpose
To develop the theory and application of the grey prediction model, this investigation constructs a novel discrete grey Riccati model termed DGRM(1,1).
Design/methodology/approach
By examining a special kind of Riccati difference equation and the structure of the conventional discrete grey model (DGM), we advance a novel DGRM, and the model's prediction effect is evaluated by two numerical examples and an application case and compared with that of other conventional grey models.
Findings
The average relative simulation error of DGRM(1,1) does not change if the model is built after the original sequence has been transformed by a multiplier, and the new model is suitable to predict monotonically increasing, monotonically decreasing and unimodal sequences.
Practical implications
DGRM(1,1) is utilized to forecast the development cost of a small plane owned by the Aviation Industry Corporation of China (AVIC) with an original data sequence from 2006 to 2013. The outcomes indicate that DGRM(1,1) exhibits high precision and potential in development cost prediction.
Originality/value
Combining the Riccati difference equation with the conventional DGM, the author advances a new grey model that is suitable to predict three kinds of data series with different changing trends.