Ting Li, Zhipeng Zhang, Junhai Wang, Tingting Yan, Rui Wang, Xinran Li, Lixiu Zhang and Xiaoyi Wei
This study aims to prepare thymol-based deep eutectic solvents (DESs) and use them as lubricates for friction and wear tests to simulate the wear conditions of hybrid bearings.
Abstract
Purpose
This study aims to prepare thymol-based deep eutectic solvents (DESs) and use them as lubricates for friction and wear tests to simulate the wear conditions of hybrid bearings.
Design/methodology/approach
Through the characterization and analysis of the morphology of wear scars and the elemental composition of friction films, the tribological behavior and wear mechanism of sample materials as lubricants were investigated and the anti-wear mechanism of thymol-based DESs was discussed.
Findings
The findings demonstrate that because of the formation of a fluid lubrication film and excellent kinematic viscosity, the lubrication effect of the prepared DES is improved by about 50% compared to the base lubricating oil. The prepared [Ch]Cl-thymol DES has a better anti-friction and lubrication effect than citric-thymol, EG-thymol and urea-thymol DESs, with an average friction coefficient of about 0.04.
Originality/value
In this work, the friction reduction properties of thymol-based DESs were studied as lubricants for the first time, and the lubrication mechanism of sample materials was investigated.
Details
Keywords
Ting Li, Junmiao Wu, Junhai Wang, Yunwu Yu, Xinran Li, Xiaoyi Wei and Lixiu Zhang
The purpose of this article is to prepare graphene/polyimide composite materials for use as bearing cage materials, improving the friction and wear performance of bearing cages.
Abstract
Purpose
The purpose of this article is to prepare graphene/polyimide composite materials for use as bearing cage materials, improving the friction and wear performance of bearing cages.
Design/methodology/approach
The oil absorption and discharge tests were conducted to evaluate the oil content properties of the materials, while the mechanical properties were analyzed through cross-sectional morphology examination. Investigation into the tribological behavior and wear mechanisms encompassed characterization and analysis of wear trace morphology in PPI-based materials. Consequently, the influence of varied graphene nanoplatelets (GN) concentrations on the oil content, mechanical and tribological properties of PPI-based materials was elucidated.
Findings
The composites exhibit excellent oil-containing properties due to the increased porosity of PPI-GN composites. The robust formation of covalent bonds between GN and PPI amplifies the adhesive potency of the PPI-GN composites, thereby inducing a substantial enhancement in impact strength. Notably, the PPI-GN composites showed enhanced lubrication properties compared to PPI, which was particularly evident at a GN content of 0.5 Wt.%, as evidenced by the minimization of the average coefficient of friction and the width of the abrasion marks.
Practical implications
This paper includes implications for elucidating the wear mechanism of the polyimide composites under frictional wear conditions and then to guide the optimization of oil content and tribological properties of polyimide bearing cage materials.
Originality/value
In this paper, homogeneously dispersed PPI-GN composites were effectively synthesized by introducing GN into a polyimide matrix through in situ polymerization, and the lubrication mechanism of the PPI composites was compared with that of the PPI-GN composites to illustrate the composites’ superiority.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0415
Details
Keywords
Ting Li, Xianggang Chen, Junhai Wang, Lixiu Zhang, Xinran Li and Xiaoyi Wei
The purpose of this study is to prepare ZnFe2O4 nanospheres, sheet MoS2 and three ZnFe2O4@MoS2 core-shell composites with various shell thicknesses, and add them to the base oil…
Abstract
Purpose
The purpose of this study is to prepare ZnFe2O4 nanospheres, sheet MoS2 and three ZnFe2O4@MoS2 core-shell composites with various shell thicknesses, and add them to the base oil for friction and wear tests to simulate the wear conditions of hybrid bearings.
Design/methodology/approach
Through the characterization and analysis of the morphology of wear scars and the elemental composition of friction films, the tribological behavior and wear mechanism of sample materials as lubricant additives were investigated and the effects of shell thickness and sample concentration on the tribological properties of core–shell composite lubricant additives were discussed.
Findings
The findings demonstrate that each of the five sample materials can, to varying degrees, enhance the lubricating qualities of the base oil and that the core–shell nanocomposite sample lubricant additive has superior lubricating properties to those of ZnFe2O4 and MoS2 alone, among them ZnFe2O4@MoS2-2 core–shell composites with moderate shell thickness performed most ideally. In addition, the optimal concentration of the ZnFe2O4@MoS2 lubricant additive was 0.5 Wt.%, and a concentration that was too high led to particle deposition and affected the friction effect.
Originality/value
In this work, ZnFe2O4@MoS2 core–shell composites were synthesized for the first time using ZnFe2O4 as the carrier and the lubrication mechanism of core–shell composites and single materials were compared and studied, which illustrated the advantages of core–shell composite lubricant additives. At the same time, the influence of different shell thicknesses on the lubricant additives of core–shell composites was studied.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2022-0367/
Details
Keywords
Yu Xie, Qing Lai and Xiaogang Wu
Prior research showed that danwei, the work unit, was very important in determining workers' social, economic, and political lives in pre-reform urban China. In this chapter, we…
Abstract
Prior research showed that danwei, the work unit, was very important in determining workers' social, economic, and political lives in pre-reform urban China. In this chapter, we argue that danwei continues to be an agent of social stratification in contemporary urban China. Using data from a 1999 survey that we conducted in three large Chinese cities, Wuhan, Shanghai, and Xi'an, we assess the extent to which workers' socioeconomic well-being depends on the financial conditions of their danwei. Results show that the financial situation of danwei remains one of the most important determinants of earnings and benefits. However, the explanatory power of danwei's financial situation is much greater for earnings than for benefits.