Search results

1 – 6 of 6
Article
Publication date: 19 November 2024

Yuanxin Zhang, Liujun Xu, Xiaolong Xue, Zeyu Wang and Miroslaw Skibniewski

With the uptake of prefabricated construction (PC) facing serious obstacles in China, networked innovation can break the technical constraints while also containing the risks in…

Abstract

Purpose

With the uptake of prefabricated construction (PC) facing serious obstacles in China, networked innovation can break the technical constraints while also containing the risks in individual innovation. However, the construction community has paid little attention to PC innovation, especially networked innovation. This study aims to gain deep insights into what impacts the formation and dynamics of a prefabricated construction innovation network (PCIN). With the uptake of PC facing serious obstacles in China, networked innovation can break the technical constraints while also containing the risks in individual innovation.

Design/methodology/approach

The research design follows a sequential mixed methodology of qualitative and quantitative data collection and analysis. It first conceptualizes the PCIN based on the quadruple helix model and formulates a corresponding system dynamics model based on causality analysis. After validating the PCIN model using empirical data, simulations are carried out using Vensim PLE software. Finally, this study identifies key factors that promote the formation of PCIN in China through sensitivity analysis.

Findings

The results show that PC predicts a continuous increase in practice as of 2030. The tested drivers all positively influence the formation of the PCIN, with market demand and risk sharing having the greatest influence, followed by competitive pressure, profit government support, scientific and technological advancement and collaborative innovation strategy.

Originality/value

The study makes three major contributions. First, it provides a novel angle for a deeper understanding of the PC innovation. Second, it proposes a new approach for probing the formation and dynamics of the PCIN. Finally, it offers a theoretical reference for promoting the formation of innovation networks and the development of PC.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 March 2023

Jun Liu, Sike Hu, Fuad Mehraliyev and Haolong Liu

This study aims to investigate the current state of research using deep learning methods for text classification in the tourism and hospitality field and to propose specific…

Abstract

Purpose

This study aims to investigate the current state of research using deep learning methods for text classification in the tourism and hospitality field and to propose specific guidelines for future research.

Design/methodology/approach

This study undertakes a qualitative and critical review of studies that use deep learning methods for text classification in research fields of tourism and hospitality and computer science. The data was collected from the Web of Science database and included studies published until February 2022.

Findings

Findings show that current research has mainly focused on text feature classification, text rating classification and text sentiment classification. Most of the deep learning methods used are relatively old, proposed in the 20th century, including feed-forward neural networks and artificial neural networks, among others. Deep learning algorithms proposed in recent years in the field of computer science with better classification performance have not been introduced to tourism and hospitality for large-scale dissemination and use. In addition, most of the data the studies used were from publicly available rating data sets; only two studies manually annotated data collected from online tourism websites.

Practical implications

The applications of deep learning algorithms and data in the tourism and hospitality field are discussed, laying the foundation for future text mining research. The findings also hold implications for managers regarding the use of deep learning in tourism and hospitality. Researchers and practitioners can use methodological frameworks and recommendations proposed in this study to perform more effective classifications such as for quality assessment or service feature extraction purposes.

Originality/value

The paper provides an integrative review of research in text classification using deep learning methods in the tourism and hospitality field, points out newer deep learning methods that are suitable for classification and identifies how to develop different annotated data sets applicable to the field. Furthermore, foundations and directions for future text classification research are set.

Details

International Journal of Contemporary Hospitality Management, vol. 35 no. 12
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 27 August 2020

Jun Liu, HengJin Zhang, JingJing Sun, NingXin Li and Anil Bilgihan

This paper aims to clarify the effects of motivations on negative online customer reviews (OCRs) behavior in an integrative framework and to identify the moderating role of…

1871

Abstract

Purpose

This paper aims to clarify the effects of motivations on negative online customer reviews (OCRs) behavior in an integrative framework and to identify the moderating role of monetary compensation and psychological compensation in the Chinese food and beverage industry.

Design/methodology/approach

Data were collected from 377 consumers who posted a negative review online. Hierarchical regression analyses were used to test the research hypotheses.

Findings

The authors identified some characteristics of the consumers who posted negative online reviews in the Chinese food and beverage industry and found evidence that reveals the positive effects of emotional venting motivation and altruism motivation on posting negative customer online reviews. Economic motivation and self-enhancement motivation were not significantly connected to negative OCRs behaviors. Service recovery strategies can moderate the relationship between certain motivations and behaviors. The absence of psychological compensation will aggravate the influence of emotion venting motivation on consumers’ negative online reviews, while monetary compensation can restrain the influence of altruism motivation on negative online rating behavior.

Research limitations/implications

This paper did not explore the effect of the fairness and timeliness of service recovery on negative OCRs behavior. This paper did not consider the different restaurant types and customers' characteristics, and future research can test similar models with different and more diverse samples.

Practical implications

When implementing service recovery strategies, it is important to consider the psychological component of recovery. The absence of psychological compensation aggravates the influence of high levels of emotion venting motivation on consumers’ negative OCRs, leading to a lower rating, more word comments and negative photos. High levels of monetary compensation can restrain the influence of altruism motivation on negative online rating behavior.

Originality/value

The current paper contributes to the hospitality management literature by investigating the motivations behind consumer decisions to post negative OCRs in a food and beverage context. In addition, the moderating effect that service recovery strategies have on this relationship was also explored in depth.

Details

International Journal of Contemporary Hospitality Management, vol. 32 no. 10
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 2 July 2024

Yunyun Yu, Jiaqi Chen, Fuad Mehraliyev, Sike Hu, Shengbin Wang and Jun Liu

Although the importance and variety of emotions have been emphasized in existing literature, studies on discrete emotions remain limited. This study aims to propose a method for…

Abstract

Purpose

Although the importance and variety of emotions have been emphasized in existing literature, studies on discrete emotions remain limited. This study aims to propose a method for more precise recognition and calculation of emotions in massive amounts of online data on attraction visitor experiences and behaviour, by using discrete emotion theory.

Design/methodology/approach

Using HowNet’s word similarity calculation technique, this study integrated multiple generic dictionaries, including the sentiment vocabulary ontology database of the Dalian University of Technology, the National Taiwan University Sentiment Dictionary and the Boson Dictionary. Word2vec algorithm filters emotion words unique to hospitality and tourism in 1,596,398 texts from Sogou News, Wikipedia and Ctrip reviews about attractions, and 1,765,691 reviews about attractions in China.

Findings

The discrete sentiment dictionary developed in this study outperformed the original dictionary in identifying and calculating emotions, with a total vocabulary extension of 12.07%, demonstrating its applicability to tourism.

Research limitations/implications

The developed new dictionary can be used by researchers and managers alike to quickly and accurately evaluate products and services based on online visitor reviews.

Originality/value

To the best of the authors’ knowledge, this study is the first to construct a sentiment dictionary based on discrete emotion theory applicable to hospitality and tourism in the Chinese context. This study extended the applicability of affective psychology to hospitality and tourism using discrete emotion theory. Moreover, the study offers a methodological framework for developing a domain-specific sentiment dictionary, potentially applicable to other domains in hospitality.

Details

International Journal of Contemporary Hospitality Management, vol. 36 no. 12
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 19 May 2022

Jun Liu, Yunyun Yu, Fuad Mehraliyev, Sike Hu and Jiaqi Chen

Despite a significant focus on customer evaluation and sentiment analysis, limited attention has been paid to discrete emotional perspective in terms of the emotionality used in…

2119

Abstract

Purpose

Despite a significant focus on customer evaluation and sentiment analysis, limited attention has been paid to discrete emotional perspective in terms of the emotionality used in text. This paper aims to extend the general-sentiment dictionary in Chinese to a restaurant-domain-specific dictionary, visualize spatiotemporal sentiment trends, identify the main discrete emotions that affect customers’ ratings in a restaurant setting and identify constituents of influential emotions.

Design/methodology/approach

A total of 683,610 online restaurant reviews downloaded from Dianping.com were analyzed by a sentiment dictionary optimized by the authors; the main emotions (joy, love, trust, anger, sadness and surprise) that affect online ratings were explored by using multiple linear regression methods. After tracking these sentiment review texts, Latent Dirichlet Allocation (LDA) and LDA models with term frequency-inverse document frequency as weights were used to find the factors that constitute influential emotions.

Findings

The results show that it is viable to optimize or expand sentiment dictionary by word similarity. The findings highlight that love and anger have the highest effect on online ratings. The main factors that constitute consumers’ anger (local characteristics, incorrect food portions and unobtrusive location) and love (comfortable dining atmosphere, obvious local characteristics and complete supporting services) are identified. Different from previous studies, negativity bias is not observed, which poses a question of whether it has to do with Chinese culture.

Practical implications

These findings can help managers monitor the true quality of restaurant service in an area on time. Based on the results, restaurant operators can better decide which aspects they should pay more attention to; platforms can operate better and can have more manageable webpage settings; and consumers can easily capture the quality of restaurants to make better purchase decisions.

Originality/value

This study builds upon the existing general sentiment dictionary in Chinese and, to the best of the authors’ knowledge, is the first to provide a restaurant-domain-specific sentiment dictionary and use it for analysis. It also reveals the constituents of two prominent emotions (love and anger) in the case of restaurant reviews.

Details

International Journal of Contemporary Hospitality Management, vol. 34 no. 10
Type: Research Article
ISSN: 0959-6119

Keywords

Article
Publication date: 5 December 2023

Jun Liu, Sike Hu, Fuad Mehraliyev, Haiyue Zhou, Yunyun Yu and Luyu Yang

This study aims to establish a model for rapid and accurate emotion recognition in restaurant online reviews, thus advancing the literature and providing practical insights into…

Abstract

Purpose

This study aims to establish a model for rapid and accurate emotion recognition in restaurant online reviews, thus advancing the literature and providing practical insights into electronic word-of-mouth management for the industry.

Design/methodology/approach

This study elaborates a hybrid model that integrates deep learning (DL) and a sentiment lexicon (SL) and compares it to five other models, including SL, random forest (RF), naïve Bayes, support vector machine (SVM) and a DL model, for the task of emotion recognition in restaurant online reviews. These models are trained and tested using 652,348 online reviews from 548 restaurants.

Findings

The hybrid approach performs well for valence-based emotion and discrete emotion recognition and is highly applicable for mining online reviews in a restaurant setting. The performances of SL and RF are inferior when it comes to recognizing discrete emotions. The DL method and SVM can perform satisfactorily in the valence-based emotion recognition.

Research limitations/implications

These findings provide methodological and theoretical implications; thus, they advance the current state of knowledge on emotion recognition in restaurant online reviews. The results also provide practical insights into intelligent service quality monitoring and electronic word-of-mouth management for the industry.

Originality/value

This study proposes a superior model for emotion recognition in restaurant online reviews. The methodological framework and steps are elucidated in detail for future research and practical application. This study also details the performances of other commonly used models to support the selection of methods in research and practical applications.

Details

International Journal of Contemporary Hospitality Management, vol. 36 no. 9
Type: Research Article
ISSN: 0959-6119

Keywords

1 – 6 of 6