Search results
1 – 3 of 3Rui Zhang, Zehua Dong, Yanjun Zhang, Liuhu Fu and Qiaofeng Bai
This paper aims to propose a new ultrasonic detection method for stainless steel weld defects based on complex synergetic convolutional calculation to solve two problems in the…
Abstract
Purpose
This paper aims to propose a new ultrasonic detection method for stainless steel weld defects based on complex synergetic convolutional calculation to solve two problems in the ultrasonic detection of austenitic stainless steel weld defects. These include ignoring the nonlinear information of the imaginary part in the complex domain of the signal and the correlation information between the amplitude of the real part and phase of the imaginary part and subjective dependence of diagnosis model parameters.
Design/methodology/approach
An ultrasonic detection method for weld defects based on complex synergetic convolution calculation is proposed in this paper to address the above issues. By mapping low-density, 1D detection samples to a complex domain space with high representation richness, a multi-scale and multilevel complex synergetic convolution calculation model (CSCC) is designed to match and transform samples to mine amplitude changes, phase shifts, weak phase angle changes and amplitude-phase correlation features deeply from the detection signal. This study proposed an Elite Sine-Cosine Sobol Sampling Dung Beetle Optimization Algorithm, and the detection model CSCC achieves global adaptive matching of key hyperparameters in 19 dimensions. Finally, a regulative complex synergetic convolutional calculation model is constructed to achieve high-performance detection of weld defects.
Findings
Through experiments on a self-developed Taiyuan intelligent detection and information processing weld defect dataset, the results show that the method achieves a detection accuracy of 92% for five types of weld defects: cracks, porosity, slag inclusion and unfused and unwelded components, which represent an average improvement of 11% relative to comparable models. This method is also validated with the PhysioNet electrocardiogram public dataset, which achieves better detection performance relative to the other models.
Originality/value
This method provides a theoretical basis and technical reference for developing and applying intelligent, efficient and accurate ultrasonic defects detection technology.
Details
Keywords
Rui Zhang, Na Zhao, Liuhu Fu, Lihu Pan, Xiaolu Bai and Renwang Song
This paper aims to propose a new ultrasonic diagnosis method for stainless steel weld defects based on multi-domain feature fusion to solve two problems in the ultrasonic…
Abstract
Purpose
This paper aims to propose a new ultrasonic diagnosis method for stainless steel weld defects based on multi-domain feature fusion to solve two problems in the ultrasonic diagnosis of austenitic stainless steel weld defects. These are insufficient feature extraction and subjective dependence of diagnosis model parameters.
Design/methodology/approach
To express the richness of the one-dimensional (1D) signal information, the 1D ultrasonic testing signal was derived to the two-dimensional (2D) time-frequency domain. Multi-scale depthwise separable convolution was also designed to optimize the MobileNetV3 network to obtain deep convolution feature information under different receptive fields. At the same time, the time/frequent-domain feature extraction of the defect signals was carried out based on statistical analysis. The defect sensitive features were screened out through visual analysis, and the defect feature set was constructed by cascading fusion with deep convolution feature information. To improve the adaptability and generalization of the diagnostic model, the authors designed and carried out research on the hyperparameter self-optimization of the diagnostic model based on the sparrow search strategy and constructed the optimal hyperparameter combination of the model. Finally, the performance of the ultrasonic diagnosis of stainless steel weld defects was improved comprehensively through the multi-domain feature characterization model of the defect data and diagnosis optimization model.
Findings
The experimental results show that the diagnostic accuracy of the lightweight diagnosis model constructed in this paper can reach 96.55% for the five types of stainless steel weld defects, including cracks, porosity, inclusion, lack of fusion and incomplete penetration. These can meet the needs of practical engineering applications.
Originality/value
This method provides a theoretical basis and technical reference for developing and applying intelligent, efficient and accurate ultrasonic defect diagnosis technology.
Details
Keywords
Suyun Liu, Hu Liu, Ningning Shao, Zhijun Dong, Rui Liu, Li Liu and Fuhui Wang
Polyaniline (PANI) has garnered attention for its potential applications in anticorrosion fields because of its unique properties. Satisfactory outcomes have been achieved when…
Abstract
Purpose
Polyaniline (PANI) has garnered attention for its potential applications in anticorrosion fields because of its unique properties. Satisfactory outcomes have been achieved when using PANI as a functional filler in organic coatings. More recently, research has extensively explored PANI-based organic coatings with self-healing properties. The purpose of this paper is to provide a summary of the active agents, methods and mechanisms involved in the self-healing of organic coatings.
Design/methodology/approach
This study uses specific doped acids and metal corrosion inhibitors as active and self-healing agents to modify PANI using the methods of oxidation polymerization, template synthesis, nanosheet carrier and nanocontainer loading methods. The anticorrosion performance of the coatings is evaluated using EIS, LEIS and salt spray tests.
Findings
Specific doped acids and metal corrosion inhibitors are used as active agents to modify PANI and confer self-healing properties to the coatings. The coatings’ active protection mechanism encompasses PANI’s own passivation ability, the adsorption of active agents and the creation of insoluble compounds or complexes.
Originality/value
This paper summarizes the active agents used to modify PANI, the procedures used for modification and the self-healing mechanism of the composite coatings. It also proposes future directions for developing PANI organic coatings with self-healing capabilities. The summaries and proposals presented may facilitate large-scale production of the PANI organic coatings, which exhibit outstanding anticorrosion competence and self-healing properties.
Details