Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 7 May 2019

Na Fan, Liqiang Chai, Peng Wang and Jun Liang

This paper aims to study the tribocorrosion behavior of 304 stainless steel (SS) sliding against SiC and Si3N4 counterparts in artificial seawater.

150

Abstract

Purpose

This paper aims to study the tribocorrosion behavior of 304 stainless steel (SS) sliding against SiC and Si3N4 counterparts in artificial seawater.

Design/methodology/approach

The tribocorrosion behavior of 304SS sliding against SiC and Si3N4 balls in artificial seawater has been investigated. The tests were conducted using a ball-on-disk rig equipped with an electrochemical workstation. The friction coefficient, surface morphology, wear volume and current density were determined.

Findings

When 304SS sliding against SiC ball, a smooth surface with a silica layer was formed on the top, which led to the low friction coefficient, current density and small wear volume. For 304SS-Si3N4 tribo-pair, a lot of metal debris was scattered on contact surfaces leading to high friction coefficient, current density and big wear volume.

Research limitations/implications

This research suggests that the lubrication effect of silicon-based ceramics is related to counterpart specimen in artificial seawater.

Practical implications

The results may help us to choose the appropriate ceramic ball under seawater environment.

Originality/value

The main originality of the work is to reveal the tribocorrosion behavior of 304SS sliding against SiC and Si3N4 balls, which help us to realize that the Si3N4 ball as water-lubricated ceramics could not exhibit lubrication effect when coupled with 304SS in artificial seawater.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 31 May 2019

Kehang Yu, Chen Yang, Jun Wang, Jiabo Yu and Yi Yang

The purpose of this paper is to study the variation of the mechanical strength and failure modes of solder balls with reducing diameters under conditions of multiple reflows.

191

Abstract

Purpose

The purpose of this paper is to study the variation of the mechanical strength and failure modes of solder balls with reducing diameters under conditions of multiple reflows.

Design/methodology/approach

The solder balls with diameters from 250 to 760 µm were mounted on the copper-clad laminate by 1-5 reflows. The strength of the solder balls was tested by the single ball shear test and pull test, respectively. The failure modes of tested samples were identified by combing morphologies of fracture surfaces and force-displacement curves. The stresses were revealed and the failure explanations were assisted by the finite element analysis for the shear test of single solder ball.

Findings

The average strength of a smaller solder ball (e.g. 250 µm in diameter) is higher than that of a larger one (e.g. 760 µm in diameter). The strength of smaller solder balls is more highly variable with multiple reflows than larger diameters balls, where the strength increased mostly with the number of reflows. According to load-displacement curves or fracture surface morphologies, the failure modes of solder ball in the shear and pull tests can be categorized into three kinds.

Originality/value

The strength of solder balls will not deteriorate when the diameter of solder ball is decreased with a reflow, but a smaller solder ball has a higher failure risk after multiple reflows. The failure modes for shear and pull tests can be identified quickly by the combination of force-displacement curves and the morphologies of fracture surfaces.

Details

Soldering & Surface Mount Technology, vol. 31 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 2 of 2
Per page
102050