Search results

1 – 2 of 2
Article
Publication date: 27 August 2024

Linjie Dong, Renfei Zhang, Xiaohan Liu, Jie Li, Xingsong Wang and Tian Mengqian

Regular cable trench inspection is crucial, and robotics automation provides an efficient and safer alternative to manual labor. However, existing robots have limited capabilities…

Abstract

Purpose

Regular cable trench inspection is crucial, and robotics automation provides an efficient and safer alternative to manual labor. However, existing robots have limited capabilities in traversing obstacles and lack a mechanical arm for detecting cables and equipment. This study aims to develop an intelligent robot for cable trench inspection, enhancing obstacle-crossing abilities and incorporating a mechanical arm for inspection tasks.

Design/methodology/approach

This study presents an intelligent robot for cable trench inspection, featuring a six-degree-of-freedom mechanical arm mounted on a six-track chassis with four flippers. The robot's climbing and obstacle-crossing stability, as well as the motion range of the mechanical arm, are analyzed. The positioning, navigation and remote monitoring systems are developed. Experiments, including climbing and obstacle-crossing performance tests, along with navigation and positioning system tests, are conducted. Finally, the robot's practicability is verified through field testing.

Findings

Equipped with flipper tracks, the cable trench inspection robot can traverse obstacles up to 30 cm high and maintain stable locomotion on 30° slopes. Its navigation system enables autonomous operation, while the mechanical arm performs cable current detection tasks. The remote monitoring system provides comprehensive control of the robot and environmental parameter monitoring in cable trenches.

Originality/value

The front and rear flipper tracks enhance the robot's ability to traverse obstacles in cable trenches. The mechanical arm addresses cable current and equipment contact detection issues. The navigation and remote monitoring systems improve the robot's autonomous operation and environmental monitoring capabilities. Implementing this robot can advance the automation and intelligence of cable trench inspections.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 August 2022

Xudong Sang, Lijie Yang, Dongli Li, Wencai Xu, Yabo Fu and Jiazi Shi

Honey peaches are rich in a variety of vitamins and are well known in China as the queen of fruit. However, as highly climacteric fruit, peach is too easy to affect its economic…

Abstract

Purpose

Honey peaches are rich in a variety of vitamins and are well known in China as the queen of fruit. However, as highly climacteric fruit, peach is too easy to affect its economic value. In this paper, a new passive modified atmosphere packaging system was proposed to solve the lack of water vapour removal capacity – which is still the technical bottleneck of passive modified atmosphere packaging. This paper aims to address this issue.

Design/methodology/approach

Under the conditions of relative humidity 85−90% and temperature 28°C−38°C, the influence of new passive modified atmosphere packaging on the shelf life and quality of 70% ripe peaches was studied in the paper. The effect of the new passive modified atmosphere packaging (PMAP) on fruit appearance, colour, taste, flavour, soluble solids, Vitamin C and titratable acid was investigated.

Findings

Regardless of whether 1-Methylcyclopropene is added or not, the research results show that the new PMAP has a significant effect on extending the shelf life and maintaining the quality of peaches. Compared with the control group, the shelf life of peaches treated with modified atmosphere packaging and 1-Methylcyclopropene was prolonged by 7 and 11 days, increasing the retailer's revenue by 44 and 75%.

Originality/value

A new integrated structure, which is composed of two types of films with high oxygen and high water vapour permeability was designed for the retail of peaches at room temperature. The former was mainly responsible for regulating the concentration of O2 and CO2, while the latter was for removing water vapour and regulating the relative humidity in PMAP.

Details

British Food Journal, vol. 125 no. 4
Type: Research Article
ISSN: 0007-070X

Keywords

1 – 2 of 2