Lingli Shu, Xiaoyan Li and Xuedong Liang
For nanostores, striving to become the community group-buying leader is gaining prominence. This paper aims to construct Hotelling linear models to investigate whether nanostores…
Abstract
Purpose
For nanostores, striving to become the community group-buying leader is gaining prominence. This paper aims to construct Hotelling linear models to investigate whether nanostores should be registered as leaders and their decisions in a competitive environment.
Design/methodology/approach
This paper constructs three Hotelling linear models: neither nanostore registers as community leader, only one nanostore registers as community leader and both nanostores register as community leader. The competitive operation strategies of two general nanostores under three scenarios are solved.
Findings
The study finds that nanostores without a cost advantage may benefit from being the first leader. The nanostore's preferred decisions depend on the investment cost parameters of its own and competitors which may lead to market share competition. Furthermore, consumers' sensitivity to community group-buying service has a negative effect on nanostores' profit.
Originality/value
The study is one of the few to consider the competition between community leaders. Besides, the study considers that the utilities functions of consumers are concurrently impacted by the service decisions, along with the price in different nanostores. It can provide nanostores useful implications in the dynamic industry.
Details
Keywords
Xingquan Wang, Xiuyuan Lu, Wei Chen, Fengpeng Wang, Jun Huang, Lingli Liu, Mengchao Li and Kui Lin
This paper aims to improve the general circuit of driving and protection based on insulated gate bipolar transistor (IGBT) in dielectric barrier discharge power supply by…
Abstract
Purpose
This paper aims to improve the general circuit of driving and protection based on insulated gate bipolar transistor (IGBT) in dielectric barrier discharge power supply by designing a novel half-bridge inverter circuit with discrete components.
Design/methodology/approach
With one SG3524 chip, the structure based on discrete components is used to design the IGBT drive circuit. The driving waveform is isolated and sent out by photo-coupler 6N137. The protection circuit is realized by Hall sensor directly detecting the main circuit current, supplemented by a few components, including diodes, resistors, capacitors and triodes. It improves the reliability of the protection circuit.
Findings
In the driving circuit, the phase difference of signals from two channels are 180°. Moreover, when the duty cycle is set at 40%, it can ensure sufficient pulse width modulation response time. In the protection circuit, when over-current occurs, an intermittent output signal is automatically sent out. Furthermore, the over-current response time can be controlled independently. The peak voltage can be adjusted continuously from 0 to 30 kV with its frequency from 8 to 25 kHz and the power output up to 150 W.
Originality/value
The novel circuit of driving and protection makes not only its structure simpler and easier to be realized but also key parameters, such as frequency, the duty cycle and the driving voltage, continuously adjustable. Moreover, the power supply is suitable for other discharges such as corona discharge and jet discharge.