Search results

1 – 10 of 189
Article
Publication date: 25 March 2024

Boyang Hu, Ling Weng, Kaile Liu, Yang Liu, Zhuolin Li and Yuxin Chen

Gesture recognition plays an important role in many fields such as human–computer interaction, medical rehabilitation, virtual and augmented reality. Gesture recognition using…

Abstract

Purpose

Gesture recognition plays an important role in many fields such as human–computer interaction, medical rehabilitation, virtual and augmented reality. Gesture recognition using wearable devices is a common and effective recognition method. This study aims to combine the inverse magnetostrictive effect and tunneling magnetoresistance effect and proposes a novel wearable sensing glove applied in the field of gesture recognition.

Design/methodology/approach

A magnetostrictive sensing glove with function of gesture recognition is proposed based on Fe-Ni alloy, tunneling magnetoresistive elements, Agilus30 base and square permanent magnets. The sensing glove consists of five sensing units to measure the bending angle of each finger joint. The optimal structure of the sensing units is determined through experimentation and simulation. The output voltage model of the sensing units is established, and the output characteristics of the sensing units are tested by the experimental platform. Fifteen gestures are selected for recognition, and the corresponding output voltages are collected to construct the data set and the data is processed using Back Propagation Neural Network.

Findings

The sensing units can detect the change in the bending angle of finger joints from 0 to 105 degrees and a maximum error of 4.69% between the experimental and theoretical values. The average recognition accuracy of Back Propagation Neural Network is 97.53% for 15 gestures.

Research limitations/implications

The sensing glove can only recognize static gestures at present, and further research is still needed to recognize dynamic gestures.

Practical implications

A new approach to gesture recognition using wearable devices.

Social implications

This study has a broad application prospect in the field of human–computer interaction.

Originality/value

The sensing glove can collect voltage signals under different gestures to realize the recognition of different gestures with good repeatability, which has a broad application prospect in the field of human–computer interaction.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 October 2018

Lili Wan, Bowen Wang, Xiaodong Wang, Wenmei Huang and Ling Weng

The purpose of this study is to develop an output model to extract surface microstructure characteristics of different objects, so as to predict the response of the output voltage…

Abstract

Purpose

The purpose of this study is to develop an output model to extract surface microstructure characteristics of different objects, so as to predict the response of the output voltage obtained from tactile texture sensor.

Design/methodology/approach

The model is based on the consideration of the inverse-magnetostrictive effect, the flexure mode, the linear constitutive equations and the strain principle.

Findings

This research predicts and investigates the effect of the texture properties on the tactile texture sensor output characteristics.

Originality/value

The surface texture characteristic is regarded to be important information to evaluate and recognize the object.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 August 2021

Feng Gao, Xiaorui Zhang, Ling Weng, Yujun Cheng and Jiahao Shi

Phenolic epoxy vinyl ester resin (PEVER) is an advanced resin matrix, which has excellent heat resistance, electrical insulation. However, the brittleness and poor toughness of…

Abstract

Purpose

Phenolic epoxy vinyl ester resin (PEVER) is an advanced resin matrix, which has excellent heat resistance, electrical insulation. However, the brittleness and poor toughness of its curing product limited its application, so this paper aims to modify the PEVER with hyperbranched polyimide (HBPI), so as to enhance the toughness, heat resistance and dielectric properties of PEVER.

Design/methodology/approach

Hexamethylene diisocyanate trimer was used as the central reactant. Methyl tetrahydrophthalic anhydride was used as the branching unit, stannous octoate was used as the catalyst and hydroquinone was prepared as the inhibitor. Then, the hyperbranched structure of HBPI was characterized by Fourier transform infrared spectrometer and 13C-NMR. Next, PEVER was mixed with different contents of HBPI, and then the authors tested its curing product.

Findings

It is found that with the addition of HBPI, the free volume of the system was increased and the content of polar groups was decreased in each unit space, so the dielectric constant (ε) and the dielectric loss (tanδ) were decreased. In addition, PEVER could be well toughened by HBPI and the thermal stability of PEVER was improved.

Originality/value

HBPI has excellent heat resistance. The addition of hyperbranched polymer increases the free volume of the system so it can slow down the transfer of stress and its nearly circular structure can absorb the impact energy from all directions. Moreover, an appropriate amount of free volume can decrease the dielectric constant of PEVER by reducing the content of polar groups.

Details

Pigment & Resin Technology, vol. 51 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 March 2018

Ling Weng, Ting Wang, Pei-Hai Ju and Li-Zhu Liu

This paper aims to develope the electromagnetic interference shielding materials with high performance. To develop advanced polymer-based electromagnetic interference shielding…

Abstract

Purpose

This paper aims to develope the electromagnetic interference shielding materials with high performance. To develop advanced polymer-based electromagnetic interference shielding materials with rather high temperature stability, good processability and moderate mechanical properties, the authors chose the polyimide (PI) foam as matrix and ferriferrous oxide (Fe3O4) as fillers to prepare the composite foams with lightweight and rather good electromagnetic interference shielding performance.

Design/methodology/approach

Some polyimide nanocomposite foams with Fe3O4 as fillers have been prepared by in situ dispersion and foaming with pyromellitic dianhydride (PMDA) and isocyanate (PAPI) as raw materials and water as foaming agent. By varying the Fe3O4 contents, a series of PI/Fe3O4 nanocomposite foams with fine microstructures and high thermal stability were obtained. The structure and performances of nanocomposite foams were examined, and the effects of Fe3O4 on the microstructure and properties of composite foams were investigated.

Findings

This work demonstrates that PI/Fe3O4 foams could be fabricated by thermally treating the polyimide foam intermediates with Fe3O4 nanoparticles through a blending reaction of precursors. The final PI/Fe3O4 composite foams maintained the excellent thermal property and showed a super paramagnetic behaviour, which has a positive effect on the improvement of electromagnetic shielding performance.

Research limitations/implications

In this paper, the effects of Fe3O4 on the performances of PI/Fe3O4 composite foam were reported. It provided an effective methodology for the preparation of polymer/Fe3O4 nanocomposite foams, which hold great promise towards the potential application in the areas of electromagnetic shielding materials.

Originality/value

A series of PI/Fe3O4 composite foams with different contents of Fe3O4 were prepared by blending reaction of the precursors. The effects of Fe3O4 on the structures and properties of PI/Fe3O4 composite foam were discussed in detail.

Details

Pigment & Resin Technology, vol. 47 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 May 2023

Ling Weng, Zhuolin Li, Xu Luo, Yuanye Zhang and Yang Liu

This paper aims to design a magnetostrictive tactile sensor for surface depth detection. Unlike the human finger, although most tactile sensors have high sensitivity to pressure…

Abstract

Purpose

This paper aims to design a magnetostrictive tactile sensor for surface depth detection. Unlike the human finger, although most tactile sensors have high sensitivity to pressure, they cannot detect millimeter-level depth information on the surface of objects precisely. To enhance the ability to detect surface depth information, a piezomagnetic sensor combining inverse magnetostrictive effect and bionic structure is developed in this paper.

Design/methodology/approach

A magnetostrictive tactile sensor based on Galfenol [(Fe83Ga17)99.4B0.6] is designed and studied for surface depth measurement. The optimal structure of the sensor is determined by experiment and theory. The test platforms for static and dynamic characteristics are set up. The static and the dynamic sensing performance of the sensor are studied experimentally.

Findings

The sensor can detect 0–2 mm depth change with a sensitivity of 91.5 mV/mm. A resolution of 50 µm can be achieved in the depth direction. In 50 cycles of loading and unloading tests, the maximum error of the sensor output voltage amplitude is only 2.23%.

Originality/value

The sensor can measure the depth information of object surface precisely with good repeatability through sliding motion and provide reference for object surface topography detection.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 4 January 2019

Guangkai Hu, Xiaorui Zhang, Lizhu Liu, Weng Ling and Weiwei Cui

The dispersity of graphene oxide (GO) has an important effect on the properties of epoxy resin (EP) composites. Many modification and dispersion methods require the use of inert…

Abstract

Purpose

The dispersity of graphene oxide (GO) has an important effect on the properties of epoxy resin (EP) composites. Many modification and dispersion methods require the use of inert solvents which do not participate in the modification reaction, although GO can be uniformly dispersed in water and alcohol solvents. Based on this requirement, several inert solvents were selected as dispersion solvents to find out the suitable inert solvent for GO dispersion into EP matrix.

Design/methodology/approach

Several inert solvents with different solubility parameters were selected as dispersion solvents to prepare GO/EP composite. The microstructure, mechanical properties, insulation properties, dielectric properties and thermal property of the composite were characterized, which was due to find suitable inert solvent for GO dispersion into EP matrix.

Findings

The dispersity of N, N-dimethylformamide (DMF) was the best stable suspension state when it was used as solvent instead of occurring sedimentation and agglomeration. Moreover, DMF was further confirmed as a suitable inert solvent for the dispersion of GO into EP according to the mechanical properties, insulation properties and thermal conductivity characterization.

Research limitations/implications

The dispersion of GO in solvents has already been researched, but the traditional solvents, such as alcohols and water, has shown their limitations with the increase of modification methods, which were not suitable for the modification environment such as cyanate graft modification. Therefore, it was very important to choose a kind of inert solvent for dissolving EP matrix and dispersing GO better.

Originality/value

Several inert solvents were used to disperse GO into EP, and the influence of different dispersing solvents on the adhesive was discussed through the analysis of the mechanical properties, insulation properties and thermal conductivity, which was due to explore the inert solvent suitable for GO dispersion.

Details

Pigment & Resin Technology, vol. 48 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 July 2017

Lizhu Liu, Hongju He, Ling Weng and Xiaorui Zhang

The purpose of this paper was to comprehensively understand the effects of imidization process on the structure and properties of polyimide (PI) films through the preparation and…

Abstract

Purpose

The purpose of this paper was to comprehensively understand the effects of imidization process on the structure and properties of polyimide (PI) films through the preparation and characterization of a variety of PI/aluminium oxide (Al2O3) nanocomposite films by using several imidization-based strategies.

Design/methodology/approach

Poly(amic acid) (PAA) containing different amounts of inorganic materials (namely, 0 Wt.%, 4 Wt.%, 8 Wt.%, 12 Wt.% and 16 Wt.%) was synthesized by using pyromellitic dianhydride and 4,4-diaminodiphenyl ether as raw material and N,N-dimethylacetamide as solvent. Subsequently, the solution obtained was casted on a glass substrate and dried by the means of various curing processes. The micro-structure, Fourier transform–infrared spectral features, breakdown field strength, dielectric properties and the corona-resistant time parameters of films were achieved.

Findings

The imidization process influences substantially the properties of composite films. Therefore, as the imidization rate is increased, the corona-resistant time and the electrical breakdown strength of composite films are also improved, while the dielectric constant faces a+ decreasing.

Research limitations/implications

In this paper, the impact of imidization process on the performance of PI/nano-Al2O3 three-layered composite film is reported. However, there are multiple factors governing these systems (such as, interlayer thickness ratio and humidity), which are not discussed herein.

Originality/value

The current study expounds the relationship between imidization ratios as well as the effect of imidization ratio on the performance of the film.

Details

Pigment & Resin Technology, vol. 46 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 August 2018

Lizhu Liu, Guangkai Hu, Xiaorui Zhang, Weng Ling and Jiawen Zhang

The effects of ultrasonication on the epoxy resin and its emulsion were investigated to find out the changes in the Mη and molecular structure of epoxy, as well as its room…

Abstract

Purpose

The effects of ultrasonication on the epoxy resin and its emulsion were investigated to find out the changes in the Mη and molecular structure of epoxy, as well as its room temperature storage stability, centrifugal stability, particle size and its distribution and particle morphology more importantly with the influence of different ultrasonic irradiation time, power and temperature.

Design/methodology/approach

The emulsion was prepared using an emulsifier with epoxy resin and by using phase inversion after subjecting to ultrasound irradiation with a power of 200 W at 50°C for 60 min. The changes in the epoxy resin and its emulsion induced by ultrasound were characterized by Ubbelohde viscometer, FT-IR, 13C-NMR, high-speed desktop centrifuge, laser particle size analyzer and transmission electron microscope.

Findings

The molecular weight of the epoxy resin was initially decreased and then stabilized by the increasing of ultrasonic irradiation time. The mole rate of the epoxy groups in epoxy molecular were decreased by about 14 per cent, resulting from ultrasonic irradiation. The particle size of the emulsion was decreased, while the particle size distribution became uniform in a certain time. The narrow distribution, stable and uniform of waterborne epoxy resin emulsion with more than 60 days room temperature storage period, 80 per cent of the supernatant volume, about 220 nm average particle size was gained with a power of 200 W at 50°C for 60 min.

Research limitations/implications

To overcome the problems commonly encountered with an epoxy emulsion, for example, short storage period and wider particle size, which limit its practical application, the effects of ultrasonic irradiation on the epoxy resin and its emulsion, were investigated. As the stability of emulsion was improved with the introduction of ultrasonic irradiation, the application of epoxy emulsion was improved.

Originality/value

The room temperature storage stability and centrifugal stability of the emulsion were decreased by the mechanical method, and thus, the benefit of an in-depth understanding of the influence of ultrasonic treatment on epoxy resin and its emulsion could further promote the development of water-based coatings.

Details

Pigment & Resin Technology, vol. 47 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 November 2016

Lizhu Liu, Weiliang Li, Weiwei Cui, Xiaorui Zhang and Weng Ling

In this paper, boric acid was loaded on the surface of expandable graphite (EG), polyvinyl alcohol (PVA) and silane coupling agent (KH550) served as a bridge. The purpose of this…

Abstract

Purpose

In this paper, boric acid was loaded on the surface of expandable graphite (EG), polyvinyl alcohol (PVA) and silane coupling agent (KH550) served as a bridge. The purpose of this study was to improve the flame retardant properties of semi-rigid polyurethane, meanwhile, the mechanical properties of the foam got ameliorated.

Design/methodology/approach

PVA was dissolved in hot water. EG was added to this solution. After stirring for 0.5 h at 85°C in ultrasonic agitation, the system was put at room temperature to cool. The silane coupling agent KH550 was added dropwise into the solution system, stirring to fully hydrolyze. Boric acid was added into the system, placing it in an oven at 90°C to dry after filtration. Changing of flame retardant properties and mechanical properties of semi-rigid polyurethane adding modified EG were characterized.

Findings

The flame retardant performance of the foam with EG has been improved, whereas the tensile strength decreased with an increase in the content of EG. After adding modified EG, compared to semi-rigid polyurethane with EG, flame retardant performance and tensile strength of the foam improved.

Research limitations/implications

In the study reported here, the surface of EG was modified by boric acid. The modified EG was added into semi-rigid polyurethane foam. The flame retardant performance and tensile strength of the foam after adding modified EG were discussed. Results of this research could benefit in-depth study of the influence of adding modified EG to semi-rigid polyurethane. The study could promote the application of flame-retardant polyurethane foam.

Originality/value

The flame retardant performance and tensile strength of the semi-rigid polyurethane were improved by adding modified EG. The effects of modified EG on the flame retardant performance and tensile strength of semi-rigid polyurethane were discussed in detail.

Details

Pigment & Resin Technology, vol. 45 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 May 2021

Jiahao Shi, Ling Weng, Xiaoming Wang, Xue Sun, Shuqiang Du, Feng Gao and Xiaorui Zhang

Epoxy resin (EP) is a kind of thermosetting resin, and its application is usually limited by poor toughness. In this case, a type of new flexible chain blocking hyperbranched…

Abstract

Purpose

Epoxy resin (EP) is a kind of thermosetting resin, and its application is usually limited by poor toughness. In this case, a type of new flexible chain blocking hyperbranched polyester (HBP) was designed and synthesized. The purpose of this study is to enhance the toughness and dielectric properties of EP.

Design/methodology/approach

P-toluene sulfonic acid was used as the catalyst, with dimethy propionic acid as the branch unit and pentaerythritol as the core in the experiment. Then, n-hexanoic acid and n-caprylic acid were, respectively, put to gain HBP with a n-hexanoic acid and n-caprylic acid capped structure. The microstructure, mechanical properties, insulation properties and dielectric properties of the composite were characterized for the purpose of finding the appropriate proportion of HBP.

Findings

HBP enhanced the toughness of epoxy-cured products by interpenetrating polymer network structure between the flexible chain of HBP and the EP molecular chain. Meanwhile, HBP reduced the ε and tgδ of the epoxy anhydride-cured product by reducing the number of polar groups per unit volume of the EP through free volumes.

Research limitations/implications

Yet EP is a kind of thermosetting resin, which is widely used in coating, aerospace, electronics, polymer composites and military fields, but it is usually limited by poor toughness. In a word, it is an urgent priority to develop new EP with better toughness and mechanical properties.

Originality/value

At present, HBP has been applied as a new kind of toughening strategy and as a modifier for EP. According to the toughening mechanism of HBP modified EP, the free volume of HBP creates a space for the EP molecule to move around when loaded. Moreover, the free volume could cause the dielectric constant of EP to diminish by reducing the content of polarizable groups. Meanwhile, the addition of HBP with flexible chains grafted to the EP could develop an interpenetrating network structure, thus further enhancing the toughness of EP

Details

Pigment & Resin Technology, vol. 51 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 189