Yao Chao, Tao Liu and Liming Shen
This study aimed to develop a method to calculate the mattress indentation for further estimating spinal alignment.
Abstract
Purpose
This study aimed to develop a method to calculate the mattress indentation for further estimating spinal alignment.
Design/methodology/approach
A universal indentation calculation model is derived based on the system theory, and the deformation characteristics of each component are analyzed by the finite element (FE) model of a partial air-spring mattress under the initial air pressure of 0.01–0.025 MPa. Finally, the calculation error of the model is verified.
Findings
The results indicate that the indentation calculation model could describe the stain of a mattress given the load and the constitutive model of each element. In addition, the FE model of a partial air-spring mattress can be used for further simulation analysis with an error of 1.47–3.42 mm. Furthermore, the deformation of the series system is mainly contributed by the air spring and the components directly in contact with it, while the top component is mainly deflection deformation. In addition, the error of the calculation model is 2.17–5.59 mm on the condition of 0.01–0.025 MPa, satisfying the engineering application. Finally, the supine spinal alignment is successfully extracted from the mattress indentation.
Research limitations/implications
The limitation of this study is that it needs to verify the practicality of the indentation calculation model for the Bonnier spiral spring mattress. The main feature of the Bonnier spring mattress is that all springs are connected, so the mattress deflection and neighborhood effect are more significant than those of the air-spring mattress. Therefore, the applicability of the model needs to be tested. Moreover, it is worth further research to reduce the deformation error of each component.
Practical implications
As part of the series of studies on the intelligent air-spring mattress, the indentation-based evaluation method of spinal alignment in sleep postures will be studied for hardness and intelligent regulation based on this study.
Social implications
The results of this research are ultimately used for the intelligent adjustment of air-spring mattresses, which automatically adjusts the hardness according to the user's sleep postures and spinal alignment, thus maintaining optimal spinal biomechanics. The successful application of this result could improve the sleep health of the general public.
Originality/value
Based on the series system theory, an indentation calculation model for mattresses with arbitrary structure is proposed, overcoming the dependence of parameters on materials and their combinations when fitting the Burgers model. Further, the spinal alignment in supine posture is extracted from the indentation, laying a theoretical foundation for further recognition and adjustment of the spinal alignment of the intelligent mattress.
Details
Keywords
Xiang Shen, Eldad Avital, Zaheer Ikram, Liming Yang, Theodosios Korakianitis and Laurent Dala
This paper aims to investigate the influence of smooth curvature distributions on the self-noise of a low Reynolds number aerofoil and to unveil the flow mechanisms in the…
Abstract
Purpose
This paper aims to investigate the influence of smooth curvature distributions on the self-noise of a low Reynolds number aerofoil and to unveil the flow mechanisms in the phenomenon.
Design/methodology/approach
In this paper, large Eddy simulation (LES) approach was performed to investigate the unsteady aerodynamic performance of both the original aerofoil E387 and the redesigned aerofoil A7 in a time-dependent study of boundary layer characteristics at Reynolds number 100,000 and angle of attack (AoA) 4-degree. The aerofoil A7 is redesigned from E387 by removing the irregularities in the surface curvature distributions and keeping a nearly identical geometry. Flow vorticity magnitude of both aerofoils, along with the spectra of the vertical fluctuating velocity component and noise level, are analysed to demonstrate the bubble flapping process near the trailing edge (TE) and the vortex shedding phenomenon.
Findings
This paper provides quantitative insights about how the flapping process of the laminar separation bubble (LSB) within the boundary layer near the TE affects the aerofoil self-noise. It is found that the aerofoil A7 with smooth curvature distributions presents a 10% smaller LSB compared to the aerofoil E387 at Reynolds number 100,000 and AoA 4-degree. The LES results also suggest that curvature distribution smoothing leads to a 6.5% reduction in overall broadband noise level.
Originality/value
This paper fulfils an identified need to reveal the unknown flow structure and the boundary layer characteristics that resulted in the self-noise reduction phenomenon yielded by curvature distribution smoothing.
Details
Keywords
Zimou Tang, Min Yang, Jianxiong Xiao, Zheng Shen, Liming Tang and Jibin Wang
This paper aims to present an engineering computational method for fatigue life evaluation of welded structures on large-scale equipment under random vibration load.
Abstract
Purpose
This paper aims to present an engineering computational method for fatigue life evaluation of welded structures on large-scale equipment under random vibration load.
Design/methodology/approach
Based on a case study of the traction transformers, virtual fatigue test (VFT) was proposed via numerical simulation approach. Static analysis was conducted to identify the risky zone and then dynamic response of the risky welds under random vibration load was calculated based on frequency-domain structural stress method (FDSSM) theory, life distribution and associated survivability at various locations of the structure were obtained. Structural modification was finally performed according to the evaluation results. Moreover, experimental test was carried out and compared with the virtual test result.
Findings
By applying the virtual test, fatigue life of the complex welded structures on large-scale equipment can be accurately and efficiently obtained considering dynamic effect under random vibration load. Meanwhile, risky welds can be directly determined and targeted modification scheme can be accordingly concluded. Validity of the VFT result was proved by comparing with the experimental test.
Originality/value
The proposed method can help obtain equivalent structural stress and fatigue life distribution of the welded structure at any position with various survivability and make quantitative evaluation on the life-extending effect of the structural modification. This method shows significant cost and efficiency advantages over experimental test during design stage of the large-scale structures in numerous manufacturing industries.
Details
Keywords
Chin How (Norman) Goh, Michael D. Short, Nanthi S. Bolan and Christopher P. Saint
Biosolids, the residual solids from wastewater treatment operations and once considered a waste product by the industry, are now becoming increasingly recognised as a…
Abstract
Biosolids, the residual solids from wastewater treatment operations and once considered a waste product by the industry, are now becoming increasingly recognised as a multifunctional resource with growing opportunities for marketable use. This shift in attitude towards biosolids management is spurred on by increasing volatility in energy, fertilizer and commodity markets as well as moves by the global community towards mitigating global warming and the effects of climate change. This chapter will provide an overview of current global biosolids practices (paired with a number of Australian examples) as well as discuss potential future uses of biosolids. Additionally, present and future risks and opportunities of biosolids use are highlighted, including potential policy implications.
Details
Keywords
Xiang Shen, Kai Zeng, Liming Yang, Chengyong Zhu and Laurent Dala
This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of…
Abstract
Purpose
This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of upward and downward lobe patterns, different lobe widths and deflection angles on flow separation, aiming for a deeper understanding of the flow physics behind the passive flow control system.
Design/methodology/approach
Large Eddy Simulation and Reynolds-averaged Navier–Stokes were used to evaluate the results of the study. The research explores the impact of upward and downward patterns of lobes on flow separation through the effects of different lobe widths and deflection angles. Numerical methods are used to analyse the behaviour of transonic flow over BFS and compared it to existing experimental results.
Findings
The square-lobed trailing edges significantly enhance the reduction of mean reattachment length by up to 80%. At Ma = 0.8, the up-downward configuration demonstrates increased effectiveness in reducing the root mean square of pressure fluctuations at a proximity of 5-step height in the wake region, with a reduction of 50%, while the flat-downward configuration proves to be more efficient in reducing the root mean square of pressure fluctuations at a proximity of 1-step height in the near wake region, achieving a reduction of 71%. Furthermore, the study shows that the up-downward configuration triggers early spanwise velocity fluctuations, whereas the standalone flat-downward configuration displays less intense crosswise velocity fluctuations within the wake region.
Practical implications
The findings demonstrate the effectiveness of square-lobed trailing edges as passive control techniques, showing significant implications for improving efficiency, performance and safety of the design in aerospace and industrial systems.
Originality/value
This paper demonstrates that the square-lobed trailing edges are effective in reducing the mean reattachment length and pressure fluctuations in transonic conditions. The study evaluates the efficacy of different configurations, deflection angles and lobe widths on flow and provides insights into the flow physics of passive flow control systems.
Details
Keywords
Liming Xiao, Bin Han, Sainan Yang and Shuai Liu
The construction of industrial park in the current development model of circular economy has been widely regarded as one of the important modes of macroeconomic exploration all…
Abstract
The construction of industrial park in the current development model of circular economy has been widely regarded as one of the important modes of macroeconomic exploration all over the world. Therefore, the research on the application of multi-project management theory based on circular economy in the construction of industrial park was proposed in this paper. First, the circular economy and multi-project management theory were expounded in detail. Then, the geographical location of multi project management in Qingyuan recycled plastic industrial park in Guangdong Province and the distribution of each building community were explained. And on this basis, the construction of the park's production, plant areas, residential areas and the planning objectives after completion were analyzed in detail. On the basis of analysis, the multi project management model used in the park was explained. It is pointed out that the construction of the park should be based on its own planning and practical needs, and the appropriate multi project management model should be chosen.
Details
Keywords
Johnny Kwok Wai Wong, Mojtaba Maghrebi, Alireza Ahmadian Fard Fini, Mohammad Amin Alizadeh Golestani, Mahdi Ahmadnia and Michael Er
Images taken from construction site interiors often suffer from low illumination and poor natural colors, which restrict their application for high-level site management purposes…
Abstract
Purpose
Images taken from construction site interiors often suffer from low illumination and poor natural colors, which restrict their application for high-level site management purposes. The state-of-the-art low-light image enhancement method provides promising image enhancement results. However, they generally require a longer execution time to complete the enhancement. This study aims to develop a refined image enhancement approach to improve execution efficiency and performance accuracy.
Design/methodology/approach
To develop the refined illumination enhancement algorithm named enhanced illumination quality (EIQ), a quadratic expression was first added to the initial illumination map. Subsequently, an adjusted weight matrix was added to improve the smoothness of the illumination map. A coordinated descent optimization algorithm was then applied to minimize the processing time. Gamma correction was also applied to further enhance the illumination map. Finally, a frame comparing and averaging method was used to identify interior site progress.
Findings
The proposed refined approach took around 4.36–4.52 s to achieve the expected results while outperforming the current low-light image enhancement method. EIQ demonstrated a lower lightness-order error and provided higher object resolution in enhanced images. EIQ also has a higher structural similarity index and peak-signal-to-noise ratio, which indicated better image reconstruction performance.
Originality/value
The proposed approach provides an alternative to shorten the execution time, improve equalization of the illumination map and provide a better image reconstruction. The approach could be applied to low-light video enhancement tasks and other dark or poor jobsite images for object detection processes.
Details
Keywords
Xulong Wang, Xuejiao Bai and Liming Zhao
This study explores the link between additional reviews, credibility, and consumers’ online purchasing behavior.
Abstract
Purpose
This study explores the link between additional reviews, credibility, and consumers’ online purchasing behavior.
Design/methodology/approach
We employ a 2 × 2 between-subjects design to measure subjects’ purchasing behavior with versus without additional reviews and with important versus non-important attributes. A total of 529 valid questionnaires are collected from university students across 30 Chinese provinces.
Findings
The addition of negative reviews to a positive initial review enhances consumers’ perceived credibility of the reviewer and the overall review content. This effect is positively moderated by the attribute importance in additional reviews. Moreover, we find that as the time interval increases, consumers’ perceived credibility gradually increases but eventually decreases after reaching a certain threshold. In addition, the attribute importance in additional reviews negatively moderates the impact of perceived credibility on consumer purchasing behavior.
Originality/value
Existing studies on first and subsequent reviews mainly focus on the difference in perceived usefulness between the two. They do not examine how additional reviews affect potential customers’ perceived credibility and their purchase decision-making. This study bridges the gap between the word-of-mouth literature and marketing practices.
Details
Keywords
Chocolate and cocoa are made from the “beans” or seeds of several small trees, natives of tropical America, of which Theobroma cacao (L.) is by far the most important. Cocoa beans…
Abstract
Chocolate and cocoa are made from the “beans” or seeds of several small trees, natives of tropical America, of which Theobroma cacao (L.) is by far the most important. Cocoa beans were highly esteemed by the aborigines, especially the Aztecs of Mexico and Peru, who prepared from them beverages and foods. They were brought to the notice of Europeans by Cortez and other explorers, but were not extensively imported into Europe until the seventeenth century, about the time tea and coffee were introduced from the East. At present the world's supply comes chiefly from Venezuela, Guiana, Ecuador, Brazil, Trinidad, Cuba, Mexico, and other regions bordering on the Gulf of Mexico, being gathered in these regions from trees both wild and cultivated; and also to some extent from Java, Ceylon, Africa, and other parts of the Old World, where the tree has been successfully cultivated.
Shikha Pandey, Yogesh Iyer Murthy and Sumit Gandhi
This study aims to investigate the use of 20 commonly applied regression methods to predict concrete corrosion. These models are assessed for accuracy and interpretability using…
Abstract
Purpose
This study aims to investigate the use of 20 commonly applied regression methods to predict concrete corrosion. These models are assessed for accuracy and interpretability using SHapley Additive Explanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) analysis to provide structural health monitoring prognostic tools.
Design/methodology/approach
This study evaluated model performance using standard measures including root mean square error (RMSE), mean square error (MSE), R-squared (R2) and mean absolute error (MAE). Interpretability was evaluated using SHAP and LIME. The X and Y distances, concrete age, relative humidity and temperature were input parameters, whereas half-cell potential (HCP) values were considered output. The experimental data set consisted of observations taken for 270 days.
Findings
Gaussian process regression (GPR) models with rational quadratic, square exponential and matern 5/2 kernels outperformed others, with RMSE values around 16.35, MSE of roughly 267.50 and R2 values near 0.964. Bagged and boosted ensemble models performed well, with RMSE around 17.20 and R2 values over 0.95. Linear approaches, such as efficient linear least squares and linear SVM, resulted in much higher RMSE values (approximately 40.17 and 40.02) and lower R2 values (approximately 0.79), indicating decreased prediction accuracy.
Practical implications
The findings highlight the effectiveness of GPR models in forecasting corrosion in concrete buildings. The use of both SHAP and LIME for model interpretability improves the transparency of predictive maintenance models, making them more reliable for practical applications.
Social implications
Safe infrastructure is crucial to public health. Predicting corrosion and other structural problems improves the safety of buildings, bridges and other community-dependent structures. Public safety, infrastructure durability and transportation and utility interruptions are improved by reducing catastrophic breakdowns.
Originality/value
This study reduces the gap between model accuracy and interpretability in predicting concrete corrosion by proposing a data-driven method for structural health monitoring. The combination of GPR models and ensemble approaches provides a solid foundation for future research and practical applications in predictive maintenance. This comprehensive approach underscores the potential of data-driven methods for predictive maintenance in concrete structures, with implications for broader applications in various industries.