Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 24 March 2022

Lidija Tomić, Olja Čokorilo, Ljubiša Vasov and Branimir Stojiljković

The paper aims to investigate the compatibility of manned-aircraft airborne collision avoidance systems (ACAS) for use on unmanned aerial vehicles (UAV).

153

Abstract

Purpose

The paper aims to investigate the compatibility of manned-aircraft airborne collision avoidance systems (ACAS) for use on unmanned aerial vehicles (UAV).

Design/methodology/approach

The paper uses the Fault Tree method for defining ACAS model adapted for the UAV operations, with the aim of showing the presence of certain factors that configure in such ACAS system, and whose failure can lead to an adverse event – mid-air collision.

Findings

Based on the effectiveness analysis of ACAS solution adapted for the UAV operations, for given inputs, it can be concluded that the probability of ACAS failure is on the order of 10–4, as well as that in the case of autonomous ACAS solution for the UAV, the probability is reduced to 10–5. The most influential factors for the failure of the UAV’s ACAS are as follows: technical implications on the UAV, human factor, sensor error, communication and C2 link issue.

Practical implications

The established model could be used both in the UAV’s ACAS design and application phases, with the aim of assessing the effectiveness of the adopted solution. The model outputs not only highlight the critical points of the system but also provide the basis for defining the Target Level of Safety (TLOS) for the UAV operations.

Originality/value

The developed model can be expected to speed up the design and adoption process of ACAS solutions for the UAVs. Also, the paper presents one of the first attempts to quantify TLOS for the UAV operations in the context of collision avoidance systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 15 November 2011

George K. Stylios

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

932

Abstract

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 2 of 2
Per page
102050