Evila L. Melgoza, Guillem Vallicrosa, Lidia Serenó, Joaquim Ciurana and Ciro A. Rodríguez
This work aims to present the design of a new continuous tool-path strategy for open-source low-cost fused deposition modeling (FDM) machines, such as Fab@Home or RepRap; and the…
Abstract
Purpose
This work aims to present the design of a new continuous tool-path strategy for open-source low-cost fused deposition modeling (FDM) machines, such as Fab@Home or RepRap; and the development of an innovative integrated tool to design and fabricate customized tracheal stents with any FDM machine and six patient parameters. Both contributions were validated and implemented by obtaining a customized medical-grade silicone tracheal stent.
Design/methodology/approach
For the design of the new deposition strategy, a Python programming language was used. The new tool-path strategy was proposed as a continuous path to avoid drops and gaps and to improve the accuracy of the final model. Meanwhile, patient parameters were obtained by medical doctors and introduced into the innovative integrated system. On the one hand, one mold generated automatically, and viewed with Matlab® software, was fabricated with a Fab@Home machine, optimized with the continuous tool-path strategy. On the other hand, the same generated mold was viewed in SolidWorks/Excel software and was fabricated using a commercial FDM machine. Finally, the mold was filled with medical grade silicone, and a silicone tracheal stent was obtained.
Findings
Path planning for extrusion technologies is still a major concern, especially for open-source FDM machines. The results obtained in this work show the benefits of applying the newly developed continuous tool-path strategy to optimize the performance and efficiency of these machines. In addition, the proposed innovative integrated system allows the fabrication of customized tracheal stents rapidly and affordably.
Practical implications
The possibility of obtaining customized tracheal stents is a worthy challenge. Medical doctors could play a more active role and interact during the design process, helping to obtain more suitable stents. The method proposed herein would provide the opportunity to obtain real values from the trachea of a patient in the operating room and quickly fabricate a customized stent that would fit the patient's trachea perfectly.
Originality/value
The results obtained in this work are relevant and have future applications in both the medical and the additive manufacturing fields. The optimized tool-path strategy can help to improve and enhance the use of low-cost FDM machines. Moreover, the innovative automatic design approach to fabricate tracheal stents may open new market opportunities in the medical device field.
Details
Keywords
Karla Monroy, Jordi Delgado, Lidia Sereno, Joaquim Ciurana and Nicolas J Hendrichs
Therefore, the purpose of this study is to understand the relationships between the processing parameters and the geometric form of the produced single tracks, in order to control…
Abstract
Purpose
Therefore, the purpose of this study is to understand the relationships between the processing parameters and the geometric form of the produced single tracks, in order to control dimensional quality in future experimentations. The quality of the deposited single track and layer is of prime importance in the selective laser melting (SLM) process, as it affects the product quality in terms of dimensional precision and product performance.
Design/methodology/approach
In this paper, a vertical milling machining center equipped with an Ytterbium-fiber laser was used in the SLM experimentation to form single cobalt-chromium-molybdenum (CoCrMo) tracks. The different geometric features and the influence of the scanning parameters on these morphologic characteristics were studied statistically by means of ANOVA.
Findings
Evidently, track height (h1) inaccuracy reduced in layer thicknesses between 100 and 200 μm. The re-melt depth (h2) was determined by the energy parameters, with laser power of 325-350 W and scanning speed (SS) of 66.6-83.3 mm/s being the most favorable parameters to obtain the required anchoring. Moreover, a contact angle of 117° was proposed as optimal, as it permitted an adequate overlapping region and a full densification, and, finally, an SS of 50 mm/s and a layer thickness of 250 were suggested for its development.
Originality/value
The comprehension of the phenomena inherent to the process is related to the single track geometrical characteristics, which allow the definition of an optimal value for each factor for a further proposal of processing conditions that can finally derive a higher precision, wetting, density and mechanical properties.