Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 22 June 2010

Joan Saez‐Pons, Lyuba Alboul, Jacques Penders and Leo Nomdedeu

The Group of Unmanned Assistant Robots Deployed in Aggregative Navigation by Scent (GUARDIANS) multi‐robot team is to be deployed in a large warehouse in smoke. The team is to…

629

Abstract

Purpose

The Group of Unmanned Assistant Robots Deployed in Aggregative Navigation by Scent (GUARDIANS) multi‐robot team is to be deployed in a large warehouse in smoke. The team is to assist firefighters search the warehouse in the event or danger of a fire. The large dimensions of the environment together with development of smoke which drastically reduces visibility, represent major challenges for search and rescue operations. The GUARDIANS robots act alongside a firefighter and guide and accompany the firefighters on the site while indicating possible obstacles and the locations of danger and maintain communications links. The purpose of this paper is to focus on basic navigation behaviours of multi‐robot or human‐robot teams, which have to be achieved without central and on‐line control in both categories of GUARDIANS robots' tasks.

Design/methodology/approach

In order to fulfill the aforementioned tasks, the robots need to be able to perform certain behaviours. Among the basic behaviours are capabilities to stay together as a group, that is, generate a formation and navigate while keeping this formation. The control model used to generate these behaviours is based on the so‐called social potential field framework, which the authors adapt to the specific tasks required for the GUARDIANS scenario. All tasks can be achieved without central control, and some of the behaviours can be performed without explicit communication between the robots.

Findings

The GUARDIANS environment requires flexible formations of the robot team: the formation has to adapt itself to the circumstances. Thus, the application has forced the concept of a formation to be re‐defined. Using the graph‐theoretic terminology, it can be said that a formation may be stretched out as a path or be compact as a star or wheel. The developed behaviours have been implemented in simulation environments as well as on real ERA‐MOBI robots commonly referred to as Erratics. Advantages and shortcomings of the model, based on the simulations as well as on the implementation with a team of Erratics are discussed.

Originality/value

This paper discusses the concept of a robot formation in the context of a real world application of a robot team (Swarm).

Details

Industrial Robot: An International Journal, vol. 37 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 1 of 1
Per page
102050