Xinjian Ma, Shiqian Liu, Huihui Cheng and Weizhi Lyu
This paper aims to focus on the sensor fault-tolerant control (FTC) for civil aircraft under exterior disturbance.
Abstract
Purpose
This paper aims to focus on the sensor fault-tolerant control (FTC) for civil aircraft under exterior disturbance.
Design/methodology/approach
First, a three-step cubature Kalman filter (TSCKF) is designed to detect and isolate the sensor fault and to reconstruct the sensor signal. Meanwhile, a nonlinear disturbance observer (NDO) is designed for disturbance estimation. The NDO and the TSCKF are combined together and an NDO-TSCKF is proposed to solve the problem of sensor faults and bounded disturbances simultaneously. Furthermore, an FTC scheme is designed based on the nonlinear dynamic inversion (NDI) and the NDO-TSCKF.
Findings
The method is verified by a Cessna 172 aircraft model under bias gyro fault and constant angular rate disturbance. The proposed NDO-TSCKF has the ability of signal reconstruction and disturbance estimation. The proposed FTC scheme is also able to solve the sensor fault and disturbance simultaneously.
Research limitations/implications
NDO-TSCKF is the novel algorithm used in sensor signal reconstruction for aircraft. Then, disturbance observer-based FTC can improve the flight control system performances when the system with faults.
Practical implications
The NDO-TSCKF-based FTC scheme can be used to solve the sensor fault and exterior disturbance in flight control. For example, the bias gyro fault with constant angular rate disturbance of a civil aircraft is studied.
Social implications
Signal reconstruction for critical sensor faults and disturbance observer-based FTC for civil aircraft are useful in modern civil aircraft design and development.
Originality/value
This is the research paper studies on the signal reconstruction and FTC scheme for civil aircraft. The proposed NDO-TSCKF is better than the current reconstruction filter because the failed sensor signal can be reconstructed under disturbances. This control scheme has a better fault-tolerant capability for sensor faults and bounded disturbances than using regular NDI control.
Details
Keywords
Shaonan Shi, Feixiang Tang, Yongqiang Yu, Yuzheng Guo, Fang Dong and Sheng Liu
Hoping to uncover the physical principles of the vibration of the functionally graded material (FGM) microplate, by which the authors can make contributions to the design and…
Abstract
Purpose
Hoping to uncover the physical principles of the vibration of the functionally graded material (FGM) microplate, by which the authors can make contributions to the design and manufacturing process in factories like micro-electro-mechanical system (MEMS) and other industries.
Design/methodology/approach
The authors design a method by establishing a reasonable mathematical model of the physical microplate composed of a porous FGM.
Findings
The authors discover that the porosity, the distributions of porosity, the power law of the FGM and the length-to-thickness ratio all affect the natural frequency of the vibration of the microplate, but in different ways.
Originality/value
Originally proposed a model of the micro FGM plate considering the different distributions of the porosity and scale effect and analyzed the vibration frequency of it.
Details
Keywords
Bingjun Li, Shuhua Zhang, Wenyan Li and Yifan Zhang
Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the…
Abstract
Purpose
Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the broad applicability and effectiveness of the technique from different aspects and providing a new means to solve agricultural science problems. The analysis of the connotation and trend of the application of grey modeling technique in agricultural science research contributes to the enrichment of grey technique and the development of agricultural science in multiple dimensions.
Design/methodology/approach
Based on the relevant literature selected from China National Knowledge Infrastructure, the Web of Science, SpiScholar and other databases in the past 37 years (1985–2021), this paper firstly applied the bibliometric method to quantitatively visualize and systematically analyze the trend of publication, productive author, productive institution, and highly cited literature. Then, the literature is combed by the application of different grey modeling techniques in agricultural science research, and the literature research progress is systematically analyzed.
Findings
The results show that grey model technology has broad prospects in the field of agricultural science research. Agricultural universities and research institutes are the main research forces in the application of grey model technology in agricultural science research, and have certain inheritance. The application of grey model technology in agricultural science research has wide applicability and precise practicability.
Originality/value
By analyzing and summarizing the application trend of grey model technology in agricultural science research, the research hotspot, research frontier and valuable research directions of grey model technology in agricultural science research can be more clearly grasped.
Details
Keywords
Yuexin Zhang, Lihui Wang and Yaodong Liu
To reduce the effect of parameter uncertainties and input saturation on path tracking control for autonomous combine harvester, a path tracking controller is proposed, which…
Abstract
Purpose
To reduce the effect of parameter uncertainties and input saturation on path tracking control for autonomous combine harvester, a path tracking controller is proposed, which integrates an adaptive neural network estimator and a saturation-aided system.
Design/methodology/approach
First, to analyze and compensate the influence of external factors, the vehicle model is established combining a dynamic model and a kinematic model. Meanwhile, to make the model simple, a comprehensive error is used, weighting heading error and position error simultaneously. Second, an adaptive neural network estimator is presented to calculate uncertain parameters which eventually improve the dynamic model. Then, the path tracking controller based on the improved dynamic model is designed by using the backstepping method, and its stability is proved by the Lyapunov theorem. Third, to mitigate round-trip operation of the actuator due to input saturation, a saturation-aided variable is presented during the control design process.
Findings
To verify the tracking accuracy and environmental adaptability of the proposed controller, numerical simulations are carried out under three different cases, and field experiments are performed in harvesting wheat and paddy. The experimental results demonstrate the tracking errors of the proposed controller that are reduced by more than 28% with contrast to the conventional controllers.
Originality/value
An adaptive neural network-based path tracking control is proposed, which considers both parameter uncertainties and input saturation. As far as we know, this is the first time a path tracking controller is specifically designed for the combine harvester with full consideration of working characteristics.
Details
Keywords
Yanjun Lu, Li Xiong, Yongfang Zhang, Peijin Zhang, Cheng Liu, Sha Li and Jianxiong Kang
This paper aims to introduce a novel four-dimensional hyper-chaotic system with different hyper-chaotic attractors as certain parameters vary. The typical dynamical behaviors of…
Abstract
Purpose
This paper aims to introduce a novel four-dimensional hyper-chaotic system with different hyper-chaotic attractors as certain parameters vary. The typical dynamical behaviors of the new hyper-chaotic system are discussed in detail. The control problem of these hyper-chaotic attractors is also investigated analytically and numerically. Then, two novel electronic circuits of the proposed hyper-chaotic system with different parameters are presented and realized using physical components.
Design/methodology/approach
The adaptive control method is derived to achieve chaotic synchronization and anti-synchronization of the novel hyper-chaotic system with unknown parameters by making the synchronization and anti-synchronization error systems asymptotically stable at the origin based on Lyapunov stability theory. Then, two novel electronic circuits of the proposed hyper-chaotic system with different parameters are presented and realized using physical components. Multisim simulations and electronic circuit experiments are consistent with MATLAB simulation results and they verify the existence of these hyper-chaotic attractors.
Findings
Comparisons among MATLAB simulations, Multisim simulation results and physical experimental results show that they are consistent with each other and demonstrate that changing attractors of the hyper-chaotic system exist.
Originality/value
The goal of this paper is to construct a new four-dimensional hyper-chaotic system with different attractors as certain parameters vary. The adaptive synchronization and anti-synchronization laws of the novel hyper-chaotic system are established based on Lyapunov stability theory. The corresponding electronic circuits for the novel hyper-chaotic system with different attractors are also implemented to illustrate the accuracy and efficiency of chaotic circuit design.
Details
Keywords
Chunlei Li, Chaodie Liu, Zhoufeng Liu, Ruimin Yang and Yun Huang
The purpose of this paper is to focus on the design of automated fabric defect detection based on cascaded low-rank decomposition and to maintain high quality control in textile…
Abstract
Purpose
The purpose of this paper is to focus on the design of automated fabric defect detection based on cascaded low-rank decomposition and to maintain high quality control in textile manufacturing.
Design/methodology/approach
This paper proposed a fabric defect detection algorithm based on cascaded low-rank decomposition. First, the constructed Gabor feature matrix is divided into a low-rank matrix and sparse matrix using low-rank decomposition technique, and the sparse matrix is used as priori matrix where higher values indicate a higher probability of abnormality. Second, we conducted the second low-rank decomposition for the constructed texton feature matrix under the guidance of the priori matrix. Finally, an improved adaptive threshold segmentation algorithm was adopted to segment the saliency map generated by the final sparse matrix to locate the defect regions.
Findings
The proposed method was evaluated on the public fabric image databases. By comparing with the ground-truth, the average detection rate of 98.26% was obtained and is superior to the state-of-the-art.
Originality/value
The cascaded low-rank decomposition was first proposed and applied into the fabric defect detection. The quantitative value shows the effectiveness of the detection method. Hence, the proposed method can be used for accurate defect detection and automated analysis system.
Details
Keywords
Xuhui Cong, Liang Wang, Li Ma and M. Skibnewski
This study aims to explore the critical influencing factors that lead to the site selection failure of waste-to-energy (WtE) projects in China under the influence of the “Not In…
Abstract
Purpose
This study aims to explore the critical influencing factors that lead to the site selection failure of waste-to-energy (WtE) projects in China under the influence of the “Not In My Back Yard” (NIMBY) effect, which can provide references to improve the decision-making process of similar projects in the future.
Design/methodology/approach
The fuzzy decision-making trial and evaluation laboratory (DEMATEL) method was used to propose an analytical framework for exploring the critical influencing factors affecting the site selection failure of WtE projects. The causal relationship between different influencing factors is finally determined on the basis of the opinions of 12 experts from universities, government departments, consulting units, planning and design units, construction units and WtE enterprises.
Findings
Results showed that six crucial factors resulted in the site selection failure of WtE projects from the NIMBY effect perspective: “Insufficient public participation,” “Near the place of residence,” “Nonstandard government decision-making processes,” “Low information disclosure,” “Destroys the surrounding environment,” and “Imperfect compensation scheme.”
Originality/value
Results can determine the priorities and causal relationships among the various influencing factors. The decision-making optimization suggestions can provide reference for decision- makers, thereby possibly promoting the scientific and standardization of site selection decision process.
Details
Keywords
W.X. Zhang, R.G. Liu and Y. Bai
For general quasi-static problems of viscoelastic functionally graded materials (VFGMs), the correspondence principle can be applied only for simple structures with a closed form…
Abstract
Purpose
For general quasi-static problems of viscoelastic functionally graded materials (VFGMs), the correspondence principle can be applied only for simple structures with a closed form solution of the corresponding elastic problem exists. In this paper, a new symplectic approach, according to the correspondence principle between linearly elastic and viscoelastic solids, is proposed for quasi-static VFGMs.
Design/methodology/approach
Firstly, by employing the method of separation of variables, all the fundamental eigenvectors of the governing equations are obtained analytically. Then, the satisfactions of boundary conditions prescribed on the ends and laterals are discussed based on the variable substitution and the eigenvector expansion methods.
Findings
In the numerical examples, some boundary condition problems are given. The results show the local effects due to the displacement constraints.
Originality/value
The paper provides an innovative technique for quasi-static problems of VFG Ms. Its correctness and the efficiency are well suported by numerical results.
Details
Keywords
Hongbo Zhu, Minzhou Luo and Jingzhao Li
The purpose of this study is to present an optimization-based gait planning method for biped robots according to the conditions of terrain, which takes fully the relationship…
Abstract
Purpose
The purpose of this study is to present an optimization-based gait planning method for biped robots according to the conditions of terrain, which takes fully the relationship between walking stability margin and energy efficiency into account.
Design/methodology/approach
First, the authors newly designed a practical gait motion synthesis algorithm by using the optimal allowable zero moment point (ZMP) variation region (OAZR), which can generate different gait motions corresponding to different terrains based on the modifiability of ZMP in lateral (y-axis) direction. Second, an effective gait parameter optimization algorithm is performed to find the optimal set of key gait parameters (step length, duration time of gait cycle, average height of center of mass (CoM), amplitude of the vertical CoM motion and double support ratio), which maximizes either the walking stability margin or the energy efficiency with certain walking stability margin under practical constraints (mechanical constraints of all joint motors, geometric constraints, friction force limit and yawing moment limit) according to the conditions of terrain. Third, the necessary controllers for biped robots have been introduced briefly.
Findings
The experiment data and results are described and analyzed, showing that the proposed method was verified through simulations and implemented on a DRC-XT biped robot.
Originality/value
The main contribution is that the OAZR has been defined based on AZR, which could be used to plan and generate the various feasible gait motions to help a biped robot to adapt effectively to various terrains.
Details
Keywords
Saman Esmaeilian, Dariush Mohamadi, Majid Esmaelian and Mostafa Ebrahimpour
This paper aims to minimize the total carbon emissions and costs and also maximize the total social benefits.
Abstract
Purpose
This paper aims to minimize the total carbon emissions and costs and also maximize the total social benefits.
Design/methodology/approach
The present study develops a mathematical model for a closed-loop supply chain network of perishable products so that considers the vital aspects of sustainability across the life cycle of the supply chain network. To evaluate carbon emissions, two different regulating policies are studied.
Findings
According to the obtained results, increasing the lifetime of the perishable products improves the incorporated objective function (IOF) in both the carbon cap-and-trade model and the model with a strict cap on carbon emission while the solving time increases in both models. Moreover, the computational efficiency of the carbon cap-and-trade model is higher than that of the model with a strict cap, but its value of the IOF is worse. Results indicate that efficient policies for carbon management will support planners to achieve sustainability in a cost-effectively manner.
Originality/value
This research proposes a mathematical model for the sustainable closed-loop supply chain of perishable products that applies the significant aspects of sustainability across the life cycle of the supply chain network. Regional economic value, regional development, unemployment rate and the number of job opportunities created in the regions are considered as the social dimension.