Search results

1 – 10 of 14
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 December 2005

N. Canouet, L. Fezoui and S. Piperno

The use of the prominent FDTD method for the time domain solution of electromagnetic wave propagation past devices with small geometrical details can require very fine grids and…

769

Abstract

Purpose

The use of the prominent FDTD method for the time domain solution of electromagnetic wave propagation past devices with small geometrical details can require very fine grids and can lead to very important computational time and storage. The purpose is to develop a numerical method able to handle possibly non‐conforming locally refined grids, based on portions of Cartesian grids in order to use existing pre‐ and post‐processing tools.

Design/methodology/approach

A Discontinuous Galerkin method is built based on bricks and its stability, accuracy and efficiency are proved.

Findings

It is found to be possible to conserve exactly the electromagnetic energy and weakly preserves the divergence of the fields (on conforming grids). For non‐conforming grids, the local sets of basis functions are enriched at subgrid interfaces in order to get rid of possible spurious wave reflections.

Research limitations/implications

Although the dispersion analysis is incomplete, the numerical results are really encouraging it is shown the proposed numerical method makes it possible to handle devices with extremely small details. Further investigations are possible with different, higher‐order discontinuous finite elements.

Originality/value

This paper can be of great value for people wanting to migrate from FDTD methods to more up to date time‐domain methods, while conserving existing pre‐ and post‐processing tools.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 11 May 2010

Adrien Catella, Victorita Dolean and Stéphane Lanteri

The purpose of this paper is to develop a time implicit discontinuous Galerkin method for the simulation of two‐dimensional time‐domain electromagnetic wave propagation on…

533

Abstract

Purpose

The purpose of this paper is to develop a time implicit discontinuous Galerkin method for the simulation of two‐dimensional time‐domain electromagnetic wave propagation on non‐uniform triangular meshes.

Design/methodology/approach

The proposed method combines an arbitrary high‐order discontinuous Galerkin method for the discretization in space designed on triangular meshes, with a second‐order Cranck‐Nicolson scheme for time integration. At each time step, a multifrontal sparse LU method is used for solving the linear system resulting from the discretization of the TE Maxwell equations.

Findings

Despite the computational overhead of the solution of a linear system at each time step, the resulting implicit discontinuous Galerkin time‐domain method allows for a noticeable reduction of the computing time as compared to its explicit counterpart based on a leap‐frog time integration scheme.

Research limitations/implications

The proposed method is useful if the underlying mesh is non‐uniform or locally refined such as when dealing with complex geometric features or with heterogeneous propagation media.

Practical implications

The paper is a first step towards the development of an efficient discontinuous Galerkin method for the simulation of three‐dimensional time‐domain electromagnetic wave propagation on non‐uniform tetrahedral meshes. It yields first insights of the capabilities of implicit time stepping through a detailed numerical assessment of accuracy properties and computational performances.

Originality/value

In the field of high‐frequency computational electromagnetism, the use of implicit time stepping has so far been limited to Cartesian meshes in conjunction with the finite difference time‐domain (FDTD) method (e.g. the alternating direction implicit FDTD method). The paper is the first attempt to combine implicit time stepping with a discontinuous Galerkin discretization method designed on simplex meshes.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 11 May 2010

A. Bouquet, C. Dedeban and S. Piperno

The use of the prominent finite difference time‐domain (FDTD) method for the time‐domain solution of electromagnetic wave propagation past devices with small geometrical details…

683

Abstract

Purpose

The use of the prominent finite difference time‐domain (FDTD) method for the time‐domain solution of electromagnetic wave propagation past devices with small geometrical details can require very fine grids and can lead to unmanageable computational time and storage. The purpose of this paper is to extend the analysis of a discontinuous Galerkin time‐domain (DGTD) method (able to handle possibly non‐conforming locally refined grids, based on portions of Cartesian grids) and investigate the use of perfectly matched layer regions and the coupling with a fictitious domain approach. The use of a DGTD method with a locally refined, non‐conforming mesh can help focusing on these small details. In this paper, the adaptation to the DGTD method of the fictitious domain approach initially developed for the FDTD is considered, in order to avoid the use of a volume mesh fitting the geometry near the details.

Design/methodology/approach

Based on a DGTD method, a fictitious domain approach is developed to deal with complex and small geometrical details.

Findings

The fictitious domain approach is a very interesting complement to the FDTD method, since it makes it possible to handle complex geometries. However, the fictitious domain approach requires small volume elements, thus making the use of the FDTD on wide, regular, fine grids often unmanageable. The DGTD method has the ability to handle easily locally refined grids and the paper shows it can be coupled to a fictitious domain approach.

Research limitations/implications

Although the stability and dispersion analysis of the DGTD method is complete, the theoretical analysis of the fictitious domain approach in the DGTD context is not. It is a subject of further investigation (which could provide important insights for potential improvements).

Originality/value

This is believed to be the first time a DGTD method is coupled with a fictitious domain approach.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 February 1996

Jaroslav Mackerle

Presents a review on implementing finite element methods on supercomputers, workstations and PCs and gives main trends in hardware and software developments. An appendix included…

677

Abstract

Presents a review on implementing finite element methods on supercomputers, workstations and PCs and gives main trends in hardware and software developments. An appendix included at the end of the paper presents a bibliography on the subjects retrospectively to 1985 and approximately 1,100 references are listed.

Details

Engineering Computations, vol. 13 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 3 May 2013

Liang Li, Stéphane Lanteri and Ronan Perrussel

This work is concerned with the development and the numerical investigation of a hybridizable discontinuous Galerkin (HDG) method for the simulation of two‐dimensional…

283

Abstract

Purpose

This work is concerned with the development and the numerical investigation of a hybridizable discontinuous Galerkin (HDG) method for the simulation of two‐dimensional time‐harmonic electromagnetic wave propagation problems.

Design/methodology/approach

The proposed HDG method for the discretization of the two‐dimensional transverse magnetic Maxwell equations relies on an arbitrary high order nodal interpolation of the electromagnetic field components and is formulated on triangular meshes. In the HDG method, an additional hybrid variable is introduced on the faces of the elements, with which the element‐wise (local) solutions can be defined. A so‐called conservativity condition is imposed on the numerical flux, which can be defined in terms of the hybrid variable, at the interface between neighbouring elements. The linear system of equations for the unknowns associated with the hybrid variable is solved here using a multifrontal sparse LU method. The formulation is given, and the relationship between the considered HDG method and a standard upwind flux‐based DG method is also examined.

Findings

The approximate solutions for both electric and magnetic fields converge with the optimal order of p+1 in L2 norm, when the interpolation order on every element and every interface is p and the sought solution is sufficiently regular. The presented numerical results show the effectiveness of the proposed HDG method, especially when compared with a classical upwind flux‐based DG method.

Originality/value

The work described here is a demonstration of the viability of a HDG formulation for solving the time‐harmonic Maxwell equations through a detailed numerical assessment of accuracy properties and computational performances.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 January 1995

P. MONK

If a scattering problem is solved by finite element, finite volume or finite difference methods, it is necessary to predict the far field pattern (or radar cross‐section) by using…

236

Abstract

If a scattering problem is solved by finite element, finite volume or finite difference methods, it is necessary to predict the far field pattern (or radar cross‐section) by using a near field to far field transformation. Usually this is done using the Stratton‐Chu integral relations, which give the far field pattern in terms of a near field surface integral. When volume‐based methods are used this is unnatural, and it may be necessary to employ interpolation procedures to provide the necessary surface data. In this paper an alternative method based on volume integrals is proposed. The main advantage of the new procedure is that it allows the use of discrete quantities that are naturally available from the numerical scheme. However, it is now necessary to perform volume integrals. The error in the new procedure is examined, and a simple numerical example provided.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 14 no. 1
Type: Research Article
ISSN: 0332-1649

Access Restricted. View access options
Article
Publication date: 1 January 1994

F. Beux and A. Dervieux

We consider the gradient method applied to the optimal control of asystem for which each simulation is expensive. A method for increasing thenumber of unknowns, and relying on…

119

Abstract

We consider the gradient method applied to the optimal control of a system for which each simulation is expensive. A method for increasing the number of unknowns, and relying on multilevel ideas is tested for the academic problem of shape optimization of a nozzle in a subsonic or transonic Euler flow.

Details

Engineering Computations, vol. 11 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 1 September 2000

Malika Remaki

A new finite volume scheme to solve Maxwell’s equations is presented. The approach is based on a leapfrog time scheme and a centered flux formula. This method is well suited for…

552

Abstract

A new finite volume scheme to solve Maxwell’s equations is presented. The approach is based on a leapfrog time scheme and a centered flux formula. This method is well suited for handling complex geometries, and therefore we can use unstructured grids. It is also able to capture the discontinuities of the electromagnetic fields through different media, without producing spurious oscillations. Owing to these properties, we can treat difficult problems, such a computing a scattered wave across complex objects. An analysis of the scheme is presented and numerical experiments are performed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 December 1998

Enrico Bertolazzi

A finite volume, semi‐implicit scheme, is proposed and discussed, which solves the two‐dimensional Euler equations for the hypersonic flow of a mixture of chemically reactive…

416

Abstract

A finite volume, semi‐implicit scheme, is proposed and discussed, which solves the two‐dimensional Euler equations for the hypersonic flow of a mixture of chemically reactive specie. The present scheme can be applied on a general, unstructured grid. The first order version guarantees non negativity of the densities and of the vibrational energies for arbitrarily large time steps. The semi‐implicit time discretization of advective terms and the fully implicit discretization of the highly nonlinear terms yield a simple and efficient computer algorithm. Numerical tests show that shocks are well captured and the correct profiles for the chemical specie are reproduced at low computational cost.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 1 July 2014

Irene Woyna, Erion Gjonaj and Thomas Weiland

– The purpose of this paper is to present a time domain discontinuous Galerkin (DG) approach for modeling wideband frequency dependent surface impedance boundary conditions.

198

Abstract

Purpose

The purpose of this paper is to present a time domain discontinuous Galerkin (DG) approach for modeling wideband frequency dependent surface impedance boundary conditions.

Design/methodology/approach

The paper solves the Maxwellian initial value problem in a computational domain, which is spatially discretized by the higher order DG method. On the boundary of the computational domain the paper applies a suitable impedance boundary condition (IBC). The frequency dependency of the impedance function is modeled by auxiliary differential equations (ADE).

Findings

The authors will study the resonance frequency and the Q factor of different types of cavity resonators including lossy materials. The lossy materials are modeled by means of IBCs. The authors will compare the results with analytical results, as well as numerical results obtained by direct calculations where lossy materials are included explicitly into the numerical model. Several convergence studies are performed which demonstrate the accuracy of the approach.

Originality/value

Modeling of frequency dependent boundary conditions in time domain with finite difference time domain method (FDTD) method is considered in numerous papers, as well as in frequency domain finite element method (FEM), and in a few papers also time domain FEM. However, FDTD method is only first order accurate and fails in modeling of complicated surfaces. FEM allows for high order accuracy, but time domain modeling is numerically extremely expensive. In frequency domain, broadband modeling of frequency dependent boundary conditions requires several simulations as opposed to the time domain, where a single simulation is needed. The time domain DG method proposed in this paper allows to overcome the difficulties. The authors introduce a broadband surface impedance formulation based on the ADE approach for the higher order DG method.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 14
Per page
102050