Search results

1 – 10 of 18
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 5 October 2015

C Mang, L Jason and L Davenne

The purpose of this paper is to present a new bond slip model for reinforced concrete structures. It consists in an interface element (3D) which represents the interface between…

586

Abstract

Purpose

The purpose of this paper is to present a new bond slip model for reinforced concrete structures. It consists in an interface element (3D) which represents the interface between concrete (modeled in 3D) and steel, modeled using 1D truss elements.

Design/methodology/approach

The formulation of the interface element is presented and verified through a comparison with an analytical solution on an academic case. Finally, the model is compared with experimental results on a reinforced concrete tie.

Findings

Contrary to the classical perfect or “no-slip” relation which supposes the same displacement between steel and concrete, the proposed model is able to reproduce both global (force-displacement curve) and local (crack openings) results.

Originality/value

The proposed approach, applicable to large-scale computations, represents a valuable alternative to the no-slip relation hypothesis to correctly capture the crack properties of reinforced concrete structures.

Access Restricted. View access options
Article
Publication date: 1 July 2005

J‐B. Colliat, A. Ibrahimbegović and L. Davenne

To present a new constitutive model for capturing inelastic behavior of brittle materials.

655

Abstract

Purpose

To present a new constitutive model for capturing inelastic behavior of brittle materials.

Design/methodology/approach

The multi‐surface plasticity theory is employed to describe the damage‐induced mechanisms. An original feature in that respect concerns the multi‐surface criterion which limits the principle values of elastic strains, which is equivalent to Saint‐Venant plasticity model. The latter allows to represent the damage both in tension and in compression.

Findings

Provides a quite realistic description of cracking phenomena in brittle materials, with a very few parameters, leading to a very useful tool for analyzing practical engineering problems.

Originality/value

The model is recast in terms of stress resultants and employed within a flat shell elements in order to provide a very efficient tool for analysis of cellular structures. Moreover, a detailed description of the numerical implementation is given.

Details

Engineering Computations, vol. 22 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 19 March 2020

Behrooz Yousefi, Mohammad Reza Esfahani and Mohammadreza Tavakkolizadeh

This paper aims to develop a new multi-fiber element for predicting the structural behavior of planar-reinforced concrete (RC) members.

93

Abstract

Purpose

This paper aims to develop a new multi-fiber element for predicting the structural behavior of planar-reinforced concrete (RC) members.

Design/methodology/approach

In this work, an exact multi-directional stiffness matrix is analytically derived based on the post-cracking bond-slip interaction between concrete and steel bars. The approach is also extended for large displacement analysis using Green–Lagrange finite strain tensor. In the proposed formulation, the weak form of governed differential equations is approximated by a trial-function expansion based on a finite strain-description and an additional degree of freedom for steel bars.

Findings

The findings provide a realistic description of cracking in the concrete structure. Numerical studies are conducted to examine the accuracy of the suggested approach and its capability to predict fairly complex responses of RC models. The findings prove that the proposed element can evaluate local and global responses of RC members, and it can be used as a reliable tool to reflect bond-slip effects in large displacement level. This leads to a robust and precise model for non-linear analysis of RC structures.

Originality/value

The methodology is capable of simulating coupled inelastic shear-flexural behavior of RC members through local stress field theory and Timoshenko beam model.

Access Restricted. View access options
Article
Publication date: 1 January 1991

ZHEFENG SUN and DENYS BREYSSE

Simplified methods are often employed for the analysis of reinforced concrete beams (R‐C beams). A three‐dimensional problem (3D) is often transformed into a two‐dimensional…

88

Abstract

Simplified methods are often employed for the analysis of reinforced concrete beams (R‐C beams). A three‐dimensional problem (3D) is often transformed into a two‐dimensional problem (2D) with some assumptions which are usually established in static. The essential reason for this simplification lies in the fact that the 3D finite element analysis is so expensive that it is impossible to study directly the non‐linear behaviour of R‐C beams in many cases. Our purpose is to present a specific method which allows the direct 3D analysis of R‐C beams with a suitable numerical cost. First, the 3D linear heterogeneous beam theory is briefly recalled as well as the continuum damage model used for concrete. Second, the non‐linear behaviour of concrete is introduced in the 3D beam theory. Several numerical examples illustrate the effectiveness of the method.

Details

Engineering Computations, vol. 8 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 5 March 2018

Wei Zhang, Beibing Dai, Zhen Liu and Cuiying Zhou

The cracking of a reinforced concrete lining has a significant influence on the safety and leakage of pressure tunnels. This study aims to develop, validate and apply a numerical…

280

Abstract

Purpose

The cracking of a reinforced concrete lining has a significant influence on the safety and leakage of pressure tunnels. This study aims to develop, validate and apply a numerical algorithm to simulate the lining cracking process during the water-filling period of pressure tunnels.

Design/methodology/approach

Cracks are preset in all lining elements, and the Mohr−Coulomb criterion with a tension cutoff is used in determining whether a preset crack becomes a real crack. The effects of several important factors such as the water pressure on crack surfaces (WPCS) and the heterogeneity of the lining tensile strength are also considered simultaneously.

Findings

The crack number and width increase gradually with the increase in internal water pressure. However, when the pressure reaches a threshold value, the increase in crack width becomes ambiguous. After the lining cracks, the lining displacement distribution is discontinuous and steel bar stress is not uniform. The measured stress of the steel bar is greatly determined by the position of the stress gauge. The WPCS has a significant influence on the lining cracking mechanism and should not be neglected.

Originality/value

A reliable algorithm for simulating the lining cracking process is presented by which the crack number and width can be determined directly. The numerical results provide an insight into the development law of lining cracks and show that the WPCS significantly affects the cracking mechanism.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 1 July 2014

K.A. Patel, Sandeep Chaudhary and A.K. Nagpal

The purpose of this paper is to develop, for use in everyday design, a procedure that incorporates the effect of concrete cracking in reinforced concrete (RC) beams at service…

193

Abstract

Purpose

The purpose of this paper is to develop, for use in everyday design, a procedure that incorporates the effect of concrete cracking in reinforced concrete (RC) beams at service load and requires computational efforts which is a fraction of that required for the available methods. Further for ease of use in everyday design the reinforcement input data is minimized. The procedure has been demonstrated for continuous beams and is under development for tall building frames.

Design/methodology/approach

The procedure is analytical at the element level and numerical at the structural level. A cracked span length beam element consisting of three cracked zones and two uncracked zones has been used. Closed form expressions for flexibility coefficients, end displacements, crack lengths, and mid-span deflection of the cracked span length beam element have been presented. In order to keep the procedure analytical at the element level, average tension stiffening characteristics are arrived at for cracked zones.

Findings

The proposed procedure, at minimal computation effort and minimal reinforcement input data, yields results that are close to experimental and finite element method results.

Practical implications

The procedure can be used in everyday design since it requires minimal computational effort and minimal reinforcement input data.

Originality/value

A procedure that requires minimal computational effort and minimal reinforcement input data for incorporating concrete cracking effects in RC structures at service load has been developed for use in everyday design.

Details

Engineering Computations, vol. 31 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 25 September 2009

Vipul Patel, S.H. Masood and Tim Waterman

The purpose of this paper is to investigate the static behavior of different type of butt joints for application in a timber sofa furniture frame. In timber sofa structure, butt…

996

Abstract

Purpose

The purpose of this paper is to investigate the static behavior of different type of butt joints for application in a timber sofa furniture frame. In timber sofa structure, butt joints are commonly used between plywood and hardwood members but they are normally designed without any regard to the effect of grain directions of the wood members on the joint strength. The focus of the paper is to look at the effect of grain directions on the wooden member properties and on the strength of the butt joint in order to understand the failure mode to establish a more durable and effective sofa butt joint than the one normally used by the manufacturers.

Design/methodology/approach

Experiment tests are conducted to determine the mechanical properties of joint members, the maximum load‐carrying capacity of the butt joints, and the types of the failure in the joints in relation to different grain orientations under transverse loading conditions. Plywood and hardwood members are used in construction of the joint tests. Four types of butt joints are constructed with different condition of grain orientation, glue, and screw used in the joint members. The specimens are tested by fixing the plywood member and applying a transverse load to the hardwood member to simulate the conditions in the sofa frame.

Findings

Result shows that butt joint with vertical grain orientation and joint with two screws and glue have the maximum load‐carrying capacity compared to the other three cases and compared to the current joint type used in the existing sofa frame design.

Originality/value

The paper is of value to furniture manufacturing industry, in which furniture members and joints are usually over‐designed without regard to grain orientations or applying sound engineering techniques.

Details

Assembly Automation, vol. 29 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Access Restricted. View access options
Article
Publication date: 2 January 2009

C. Kassiotis, J.‐B. Colliat, A. Ibrahimbegovic and H.G. Matthies

The purpose of this paper is to study the partitioned solution procedure for thermomechanical coupling, where each sub‐problem is solved by a separate time integration scheme.

457

Abstract

Purpose

The purpose of this paper is to study the partitioned solution procedure for thermomechanical coupling, where each sub‐problem is solved by a separate time integration scheme.

Design/methodology/approach

In particular, the solution which guarantees that the coupling condition will preserve the stability of computations for the coupled problem is studied. The consideration is further generalized for the case where each sub‐problem will possess its particular time scale which requires different time step to be selected for each sub‐problem.

Findings

Several numerical simulations are presented to illustrate very satisfying performance of the proposed solution procedure and confirm the theoretical speed‐up of computations which follow from the adequate choice of the time step for each sub‐problem.

Originality/value

The paper confirms that one can make the most appropriate selection of the time step and carry out the separate computations for each sub‐problem, and then enforce the coupling which will preserve the stability of computations with such an operator split procedure.

Details

Engineering Computations, vol. 26 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 7 October 2013

Nikolina Zivaljic, Hrvoje Smoljanovic and Zeljana Nikolic

The purpose of this paper is to present a new numerical model based on a combined finite-discrete element method, capable of predicting the behaviour of reinforced concrete…

573

Abstract

Purpose

The purpose of this paper is to present a new numerical model based on a combined finite-discrete element method, capable of predicting the behaviour of reinforced concrete structures under dynamic load up to failure.

Design/methodology/approach

An embedded model of reinforcing bars is implemented in combined finite-discrete element code. Cracking of the structure was enabled by a combined single and smeared crack model. The model for reinforcing bars was based on an approximation of the experimental curves for the bar strain in the crack. The developed numerical model includes interaction effects between reinforcement and concrete and cyclic behaviour of concrete and steel during dynamic loading.

Findings

The findings provide a realistic description of cracking in the concrete structure, where all non-linear effects are realized in joint elements of the concrete and reinforcing bars. This leads to a robust and precise model for non-linear analysis of reinforced concrete structures under dynamic load.

Originality/value

This paper presents new robust finite-discrete element numerical model for analysis and prediction of the collapse of reinforced concrete structures. The model is capable of including the effects of dynamic loading on the structures, both in the linear-elastic range, as well as in the non-linear range including crack initiation and propagation, energy dissipation due to non-linear effects, inertial effects due to motion, contact impact, and the state of rest, which is a consequence of energy dissipation in the system.

Details

Engineering Computations, vol. 30 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 7 August 2017

Miroslav Halilovic, Bojan Starman, Marko Vrh and Boris Stok

The purpose of this study, which is designed for the implementation of models in the implicit finite element framework, is to propose a robust, stable and efficient explicit…

472

Abstract

Purpose

The purpose of this study, which is designed for the implementation of models in the implicit finite element framework, is to propose a robust, stable and efficient explicit integration algorithm for rate-independent elasto-plastic constitutive models.

Design/methodology/approach

The proposed automatic substepping algorithm is founded on an explicit integration scheme. The estimation of the maximal subincrement size is based on the stability analysis.

Findings

In contrast to other explicit substepping schemes, the algorithm is self-correcting by definition and generates no cumulative drift. Although the integration proceeds with maximal possible subincrements, high level of accuracy is attained. Algorithmic tangent stiffness is calculated in explicit form and optionally no analytical second-order derivatives are needed.

Research limitations/implications

The algorithm is convenient for elasto-plastic constitutive models, described with an algebraic constraint and a set of differential equations. This covers a large family of materials in the field of metal plasticity, damage mechanics, etc. However, it cannot be directly used for a general material model, because the presented algorithm is convenient for solving a set of equations of a particular type.

Practical implications

The estimation of the maximal stable subincrement size is computationally cheap. All expressions in the algorithm are in explicit form, thus the implementation is simple and straightforward. The overall performance of the approach (i.e. accuracy, time consumption) is fully comparable with a default (built-in) ABAQUS/Standard algorithm.

Originality/value

The estimated maximal subincrement size enables the algorithm to be stable by definition. Subincrements are much larger than those in conventional substepping algorithms. No error control, error correction or local iterations are required even in the case of large increments.

Details

Engineering Computations, vol. 34 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 18
Per page
102050