Xiaoping Zhang, Yanhui Li, Meixiu Li, Heng Zheng, Qiuju Du, Hong Li, Yuqi Wang, Dechang Wang, Cuiping Wang, Kunyan Sui, Hongliang Li and Yanzhi Xia
The purpose of this paper is to purify the wastewater in the garment industry.
Abstract
Purpose
The purpose of this paper is to purify the wastewater in the garment industry.
Design/methodology/approach
The preparation of the calcium alginate (CA)/activated carbon (AC) composite membrane was achieved by vacuum freeze-drying and the cross-linking reaction between sodium alginate and CaCl2. Effective parameters in the methylene blue (MB) adsorption such as temperature, dose, contact time and pH were discussed. The adsorption properties of the composite membrane were investigated by isotherm, kinetics and thermodynamic analysis. The adsorption equilibrium data were described by the adsorption isotherm Langmuir model and the Freundlich model. The pseudo-first-order, pseudo-second-order and intra-particle diffusion equations were selected to evaluate the kinetics. The thermodynamic study described that the adsorption reaction was spontaneous and exothermic.
Findings
The AC/CA membrane is an efficient and powerful adsorbent to remove MB in printing and dyeing wastewater, and provides a new idea for the selection of adsorption materials for industrial printing and dyeing wastewater.
Practical implications
The composite membrane research on CA and AC can provide new ideas for the research of these kinds of materials.
Social implications
The paper contributes to its wider and convenientapplication in wastewater treatment.
Originality/value
Studies on the combination of CA and AC into adsorption membranes and for the removal of dyes from printing and dyeing wastewater have not been reported. A novel composite material is provided for treatment dyeing wastewater in garment production. The composite membrane research on CA and AC can provide new ideas for the research of these kinds of materials and contribute to its wider and convenient application in wastewater treatment.
Details
Keywords
Xiaoping Zhang, Yanhui Li, Meixiu Li, Qiuju Du, Hong Li, Yuqi Wang, Dechang Wang, Cuiping Wang, Kunyan Sui, Hongliang Li, Yanzhi Xia and Yuanhai Yu
In order to discover a new adsorbent that can be used to purify dye wastewater in the textile and apparel industry, a novel type of graphene oxide/gluten composite material using…
Abstract
Purpose
In order to discover a new adsorbent that can be used to purify dye wastewater in the textile and apparel industry, a novel type of graphene oxide/gluten composite material using an improved acid bath coagulation method was synthesized, which can remove methylene blue in an aqueous environment.
Design/methodology/approach
After experimentally compounding different ratios of graphene oxide and gluten, the graphene oxide/gluten composite material with 20% graphene oxide content and superlative adsorption effect was chosen. The synthesized material was characterized by different techniques such as FT-IR and SEM, indicating the microstructure of the material and the success of the composite. Various factors were considered, namely, the influence of temperature, dosage, pH and contact time. The isotherms, kinetics and thermodynamic parameters were successively discussed.
Findings
The qmax value of 214.29 mg/g of the material was higher compared to the general sorbent, thus, the graphene oxide/gluten composite material was a suitable sorbent for methylene blue removal. Overall, the graphene oxide/gluten composite material can be considered as an effectual and prospective adsorbent to remove methylene blue in the textile and apparel industrial effluent.
Originality/value
Graphene oxide is a potentially excellent sorbent. However, the high dispersibility of GO is detrimental to adsorption, it disperses rapidly in an aqueous solution making separation and recovery difficult. The high load capacity and recyclability of gluten as a colloid make it a suitable carrier for fixing GO. Studies on the combination of GO and GT into composite adsorption material and for the removal of dyes from dyeing wastewater have not been reported. The composite material research on GO and GT can provide new ideas for the research of these kinds of materials and contribute to its wider and convenient application in wastewater treatment.