Search results

1 – 1 of 1
Article
Publication date: 21 May 2019

Sebastian Rulik, Włodzimierz Wróblewski, Krzysztof Rusin and Krzysztof Rogoziński

This paper aims to determine the influence of geometrical features of the channel on the acoustic wave generation in a ducted cavity. The analysis is focussed on the effects of…

Abstract

Purpose

This paper aims to determine the influence of geometrical features of the channel on the acoustic wave generation in a ducted cavity. The analysis is focussed on the effects of the change in the entrance length upstream the cavity and the height. The study is supposed to investigate boundary layer and acoustic wave parameters, and an attempt will be made to determine the correlation between the geometrical dimension and those parameters.

Design/methodology/approach

Analysis is conducted with the aim of a computational fluid dynamics (CFD) tool and selected results are validated with experimental investigations. The influence of grid resolution and time discretization is analysed. Four different entrance lengths and height are investigated. Qualitative and quantitative comparison between cases is presented.

Findings

The investigations prove the small influence of the entrance length on acoustic wave generation, but channel height due to wave reflection and interference inside of the cavity has a significant impact on wave frequency and sound pressure level. Channel height has also impact on generation and shape of the vortex created in the cavity inlet.

Originality/value

The paper extends the knowledge of phenomena taking place in the ducted cavities. Results obtained from these investigations will be useful in designing new cooling techniques and in noise reduction. The CFD analysis makes it possible to determine the correlations between channel dimensions and SPL function and frequency of sound waves.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 1 of 1