Search results
1 – 3 of 3Aurang Zaib, Mohammad Mehdi Rashidi, Ali J. Chamkha and Krishnendu Bhattacharyya
This paper aims to peruse the influence of second law analysis for electrically conducting fluid of a Casson nanofluid over a wedge. For activation energy, a modified Arrhenius…
Abstract
Purpose
This paper aims to peruse the influence of second law analysis for electrically conducting fluid of a Casson nanofluid over a wedge. For activation energy, a modified Arrhenius function is used.
Design/methodology/approach
The highly non-linear governing equations are developed using similarity transformations and then computed numerically via Keller–Box method.
Findings
The influences of emerging parameters on velocity, temperature distribution and concentration of nanoparticle are explained and presented via graphs and tables. Also, the behavior of fluid flow is investigated through the coefficient of skin friction, Nusselt and Sherwood numbers. Results reveal that the velocity profile enhances due to increasing Casson parameter and magnetic parameter, whereas the temperature distribution and concentration of nanoparticle decrease with larger vales of Casson parameter. It is inspected that the concentration boundary layer increases due to activation energy and decreases due to reaction rate and temperature differences.
Originality/value
The authors believe that all the numerical results are original and significant which are used in biomedicine, industrial, electronics and transportation. The results have not been considered elsewhere.
Details
Keywords
A.M. Mohamad, Dhananjay Yadav, Mukesh Kumar Awasthi, Ravi Ragoju, Krishnendu Bhattacharyya and Amit Mahajan
The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study…
Abstract
Purpose
The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study examines both the marginal and over stable kind of convective movement in the system.
Design/methodology/approach
A double-phase model is used for Casson nanofluid, which integrates the impacts of thermophoresis and Brownian wave, whereas for flow in the porous matrix the altered Darcy model is occupied under the statement that nanoparticle flux is disappear on the boundaries. The resultant eigenvalue problem is resolved analytically as well as numerically with the help of Galerkin process with the Casson nanofluid Rayleigh–Darcy number as the eigenvalue.
Findings
The findings revealed that the throughflow factor postpones the arrival of convective flow and reduces the extent of convective cells, whereas the Casson factor, the Casson nanoparticle Rayleigh–Darcy number and the reformed diffusivity ratio promote convective motion and also decrease the extent of convective cells.
Originality/value
Controlling the convective movement in heat transfer systems that generate high heat flux is a real mechanical challenge. The proposed framework proved that the use of throughflow is one of the most important ways to control the convective movement in Casson nanofluid. To the best of the authors’ knowledge, no inspection has been established in the literature that studies the outcome of throughflow on the Casson nanofluid convective flow in a porous medium layer. However, the convective flow of Casson nanofluid finds many applications in improving heat transmission and energy efficiency in a range of thermal systems, such as the cooling of heat-generating elements in electronic devices, heat exchangers, pharmaceutical practices and hybrid-powered engines, where throughflow can play a significant role in controlling the convective motion.
Details