Search results

1 – 4 of 4
Open Access
Article
Publication date: 6 August 2024

Edwin Cheruiyot Kosgey, Krishnan Kanny and Festus Maina Mwangi

This study aims to understand how the facesheet size, orientation and core size influence the analytical failure mechanism mode of glass fibre reinforced polymer (GFRP)/polyvinyl…

Abstract

Purpose

This study aims to understand how the facesheet size, orientation and core size influence the analytical failure mechanism mode of glass fibre reinforced polymer (GFRP)/polyvinyl chloride (PVC) sandwich structures subjected to three-point bending. The purpose of this study was to develop failure-mode map of GFRP/PVC sandwich structures. Sandwich structures with different facesheet and core thicknesses were used to develop the failure map.

Design/methodology/approach

The sandwich structure and facesheet were fabricated using a vacuum-assisted resin infusion method with core sizes of 10, 15 and 20 mm and facesheet thicknesses of 1.5 and 3 mm and were arranged in three different orientations: angle-ply, cross-ply and quasi-isotropic. The key failure modes that occur in sandwich structures were used to predict possible failures in the developed material. Analytical equations were used in MATLAB for each observed failure mode. The probable failure modes, namely, face yielding, core shear and indentation equations, were used to construct the failure maps and were compared with the experimental data.

Findings

The boundary of the two failure modes shifts with changes in the facesheet and core thicknesses. The theoretical stiffness of sandwich panels was higher than the experimental stiffness. Based on strength-to-weight ratio, specimens E10-4, A15-8 and E20-8 exhibited the best optimum values owing to their shorter distance to the boundary lines.

Originality/value

In this study, a failure map was used to predict the possible failure modes for different GFRP facesheet orientations and thicknesses and PVC core thickness sandwich structures. Little is known about the prediction of the failure modes of unidirectional GFRP arranged in different orientations and thicknesses and PVC core thicknesses for sandwich structures. Few studies have used failure mode maps with unidirectional GFRP oriented in angle-ply, cross-ply and quasi-isotropic directions as a facesheet for sandwich structures compared to bidirectional mats. This study can serve as a guide for the correct selection of materials during the design process of sandwich structures.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 June 2022

Debasmita Mohanty, Krishnan Kanny, Smita Mohanty and Sanjay K. Nayak

The purpose of this study is to reduce the application of petroleum in automobile paint industry by replacing it with bio-based castor oil along with nano fillers to synthesize…

Abstract

Purpose

The purpose of this study is to reduce the application of petroleum in automobile paint industry by replacing it with bio-based castor oil along with nano fillers to synthesize automobile base coat (BC).

Design/methodology/approach

Bio-based polyurethane (PU) coating applicable in automobile BC was synthesized by using modified castor oil incorporated with nano silica (NS) and titanium-based pigment particles. The influential characteristics of the coating was studied by carrying out cross-cut tape test, abrasion resistance, pencil hardness, lap-shear, thermo gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis and acid, alkali and oil resistance tests.

Findings

Incorporation of NS particles, along with titanium-based pigment particles in optimized ratio into the paint matrix, increases the mechanical, chemical and oil resistance properties and hydrophobicity of the BC, and the findings are compared with the petro-based commercial BC.

Research limitations/implications

There is no significant improvement in thermal properties of the paint matrix, and it is less thermally stable than the commercial BC.

Practical implications

The paint developed through this study provides a simple and practical solution to reduce the petro-based feed-stock in automobile paint industry.

Originality/value

The current work which reports the use of ecofriendly PU BC for automobile paint applications is novel and findings of this study are original.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Content available
Book part
Publication date: 24 June 2024

Noel Scott, Brent Moyle, Ana Cláudia Campos, Liubov Skavronskaya and Biqiang Liu

Abstract

Details

Cognitive Psychology and Tourism
Type: Book
ISBN: 978-1-80262-579-0

Article
Publication date: 10 December 2021

Rajkumar Devapiriam, Karthik S. and Santhy K.

The purpose of this study is to fabricate and compare the mechanical and thermal properties of Sansevieria and Kaans fiber reinforced polyester matrices composites.

Abstract

Purpose

The purpose of this study is to fabricate and compare the mechanical and thermal properties of Sansevieria and Kaans fiber reinforced polyester matrices composites.

Design/methodology/approach

Treated Sansevieria and Kaans fiber was used as reinforcement for the fabrication of polymer matrix composites. Kaans fiber, which was available plenty in the delta region, but physical and mechanical properties of Kaans fiber were low when it compared with Sansevieria fiber. To make use of Kaans fiber for the fabrication of composite, the physical and mechanical properties have to be enhanced. So Egg shell powder was selected as a filler material to enhance the Kaans fiber reinforced composite. The selected fibers were properly weaved after alkali treatment. A three-layered (0°/45°/0°) Sansevieria fiber reinforced polymer (S-FRP) and Kaans fiber reinforced polymer (K-FRP) composite plates were fabricated using the compression molding method. As per American Society for Testing and Materials standards, the specimens were cut and mechanical, thermal and absorption properties of Sansevieria and Kaans fiber composites were investigated experimentally.

Findings

Tensile and flexural test reveals that K-FRP composite has good ductility and bending property than S-FRP composite plate. But from the other test results, S-FRP possesses high elongation capability than K-FRP. Thermo gravimetric analysis, moisture absorption and swelling test too done which clearly appeared S-FRP composite plate has prevalent execution than K-FRP composite plate.

Originality/value

This original research study enlists the mechanical, thermal properties and absorption properties of fabricated S-FRP and K-FRP composite plates.

Details

Pigment & Resin Technology, vol. 51 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 4 of 4