Koki Taniguchi, Satoshi Kubota and Yoshihiro Yasumuro
The purpose of this study is to propose a method for vulnerable pedestrians to visualize potential obstacles on sidewalks. In recent years, the number of vulnerable pedestrians…
Abstract
Purpose
The purpose of this study is to propose a method for vulnerable pedestrians to visualize potential obstacles on sidewalks. In recent years, the number of vulnerable pedestrians has been increasing as Japanese society has aged. The number of wheelchair users is also expected to increase in the future. Currently, barrier-free maps and street-view applications can be used by wheelchair users to check possible routes and the surroundings of their destinations in advance. However, identifying physical barriers that pose a threat to vulnerable pedestrians en route is often difficult.
Design/methodology/approach
This study uses photogrammetry to create a digital twin of the three-dimensional (3D) geometry of the existing walking space by collecting photographic images taken on sidewalks. This approach allows for the creation of high-resolution digital elevation models of the entire physical sidewalk surface from which physical barriers such as local gradients and height differences can be detected by uniform image filtering. The method can be used with a Web-based data visualization tool in a geographical information system, permitting first-person views of the ground and accurate geolocation of the barriers on the map.
Findings
The findings of this study showed that capturing the road surface with a small wide-angle camera while walking is sufficient for recording subtle 3D undulations in the road surface. The method used for capturing data and the precision of the 3D restoration results are described.
Originality/value
The proposed approach demonstrates the significant benefits of creating a digital twin of walking space using photogrammetry as a cost-effective means of balancing the acquisition of 3D data that is sufficiently accurate to show the detailed geometric features needed to navigate a walking space safely. Further, the findings showed how information can be provided directly to users through two-dimensional (2D) and 3D Web-based visualizations.
Details
Keywords
P.K. Sahu, P.A. Mahanwar and V.A. Bambole
The purpose of this paper is to prepare heat insulating exterior emulsion coating and to study its heat insulating property along with mechanical, chemical and weathering…
Abstract
Purpose
The purpose of this paper is to prepare heat insulating exterior emulsion coating and to study its heat insulating property along with mechanical, chemical and weathering resistance properties with varying amount of hollow glass microspheres and cenospheres.
Design/methodology/approach
For heat insulating effect, various compositions were made by incorporating different proportions of hollow glass microspheres (HGM) and cenospheres (C). The mechanical, chemical, morphological and optical properties of the coating films were studied and compared.
Findings
Addition of hollow glass microspheres and cenospheres enhanced heat insulating property of the coating, hardness, tensile strength and wet scrub resistance. It was evaluated that optimum loading for both cenospheres and hollow glass microspheres was 10 wt.% and both the systems showed good mechanical, chemical resistance and weathering properties.
Practical implications
Addition of hollow glass microspheres and cenospheres to acrylic emulsion coating is a simple and inexpensive method.
Originality/value
The new heat insulating coatings with good thermal insulation properties and improved weather resistance were prepared. These coatings could find applications in demanding fields such as exterior wall coatings and roof coatings.